Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Engkasan JP, Hasnan N, Mohd Yusuf Y, Abdul Latif L
    Am J Phys Med Rehabil, 2017 02;96(2 Suppl 1):S90-S92.
    PMID: 28059888 DOI: 10.1097/PHM.0000000000000598
  2. Ramakrishnan K, Chung TY, Hasnan N, Abdullah SJ
    Spinal Cord, 2011 Jul;49(7):812-6.
    PMID: 21221119 DOI: 10.1038/sc.2010.186
    STUDY DESIGN: Cross-sectional survey.
    OBJECTIVES: To determine the employment outcomes of persons with spinal cord injury (SCI) and to investigate the impact of various demographic, injury-related and work-related variables on these outcomes.
    SETTING: People living with SCI in Malaysia who are members of a disability support organization.
    METHODS: A total of 84 members of the Malaysian Spinal Injury Association, who have had traumatic SCI for at least 2 years and were between 15 and 64 years of age at the time of study, were interviewed through phone using a questionnaire to identify the association between demographic, injury-related and work-related variables and employment outcomes.
    RESULTS: The return to work rate in this study was 57.1% (employed at the time of study). The overall employment rate after SCI was 76.2% (worked at some point after injury). Those who were younger at time of injury (<20 years of age), able to drive a modified vehicle, independent in personal care and mobility were positively related to being employed. On the other hand, being hospitalized in the preceding 1 year and receiving financial incentives were negatively related to employment.
    CONCLUSION: Functional independence, especially ability to drive, was strongly associated with return to work and should be one of the priority goals of comprehensive rehabilitation of persons with SCI. The negative impact of recent hospitalization as well as financial compensation needs to be probed further.
  3. Aoun M, Hasnan N, Al-Aaraj H
    East Mediterr Health J, 2018 Jun 10;24(3):269-276.
    PMID: 29908022 DOI: 10.26719/2018.24.3.269
    Background: Lean practices are critical to eliminate waste and enhance the quality of healthcare services through different improvement approaches of total quality management (TQM). In particular, the soft side of TQM is used to develop the innovation skills of employees that are essential for the continuous improvement strategies of hospitals.

    Aim: The main objective was to study the relationship between lean practices, soft TQM and innovation skills in Lebanese hospitals.

    Methods: A quantitative methodology was applied by surveying 352 employees from private and public hospitals in Lebanon. The primary collected data were valid and reliable when analysed by SPSS and AMOS software as a part of structural equation modelling.

    Results: Lean practices significantly influenced the innovation skills; however, soft TQM did not mediate this relationship because it was not well implemented, especially at the level of people-based management and continuous improvement.

    Conclusion: This study has implications for healthcare practitioners to make greater efforts to implement lean practices and soft TQM. Future studies are suggested to highlight different challenges facing quality improvement in the Region.

  4. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM
    PLoS One, 2016;11(2):e0149024.
    PMID: 26859296 DOI: 10.1371/journal.pone.0149024
    BACKGROUND: Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance.

    METHODS: Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.

    RESULTS: Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units.

    CONCLUSION: Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.

  5. Hasnan N, Mohamad Saadon NS, Hamzaid NA, Teoh MX, Ahmadi S, Davis GM
    Medicine (Baltimore), 2018 Oct;97(43):e12922.
    PMID: 30412097 DOI: 10.1097/MD.0000000000012922
    This study compared muscle oxygenation (StO2) during arm cranking (ACE), functional electrical stimulation-evoked leg cycling (FES-LCE), and hybrid (ACE+FES-LCE) exercise in spinal cord injury individuals. Eight subjects with C7-T12 lesions performed exercises at 3 submaximal intensities. StO2 was measured during rest and exercise at 40%, 60%, and 80% of subjects' oxygen uptake (VO2) peak using near-infrared spectroscopy. StO2 of ACE showed a decrease whereas in ACE+FES-LCE, the arm muscles demonstrated increasing StO2 from rest in all of VO2) peak respectively. StO2 of FES-LCE displayed a decrease at 40% VO2 peak and steady increase for 60% and 80%, whereas ACE+FES-LCE revealed a steady increase from rest at all VO2 peak. ACE+FES-LCE elicited greater StO2 in both limbs which suggested that during this exercise, upper- and lower-limb muscles have higher blood flow and improved oxygenation compared to ACE or FES-LCE performed alone.
  6. Ibitoye MO, Hamzaid NA, Abdul Wahab AK, Hasnan N, Olatunji SO, Davis GM
    Comput Biol Med, 2020 02;117:103614.
    PMID: 32072969 DOI: 10.1016/j.compbiomed.2020.103614
    BACKGROUND AND OBJECTIVE: Using traditional regression modelling, we have previously demonstrated a positive and strong relationship between paralyzed knee extensors' mechanomyographic (MMG) signals and neuromuscular electrical stimulation (NMES)-assisted knee torque in persons with spinal cord injuries. In the present study, a method of estimating NMES-evoked knee torque from the knee extensors' MMG signals using support vector regression (SVR) modelling is introduced and performed in eight persons with chronic and motor complete spinal lesions.

    METHODS: The model was developed to estimate knee torque from experimentally derived MMG signals and other parameters related to torque production, including the knee angle and stimulation intensity, during NMES-assisted knee extension.

    RESULTS: When the relationship between the actual and predicted torques was quantified using the coefficient of determination (R2), with a Gaussian support vector kernel, the R2 value indicated an estimation accuracy of 95% for the training subset and 94% for the testing subset while the polynomial support vector kernel indicated an accuracy of 92% for the training subset and 91% for the testing subset. For the Gaussian kernel, the root mean square error of the model was 6.28 for the training set and 8.19 for testing set, while the polynomial kernels for the training and testing sets were 7.99 and 9.82, respectively.

    CONCLUSIONS: These results showed good predictive accuracy for SVR modelling, which can be generalized, and suggested that the MMG signals from paralyzed knee extensors are a suitable proxy for the NMES-assisted torque produced during repeated bouts of isometric knee extension tasks. This finding has potential implications for using MMG signals as torque sensors in NMES closed-loop systems and provides valuable information for implementing this method in research and clinical settings.

  7. Ibitoye MO, Hamzaid NA, Abdul Wahab AK, Hasnan N, Olatunji SO, Davis GM
    Sensors (Basel), 2016 Jul 19;16(7).
    PMID: 27447638 DOI: 10.3390/s16071115
    The difficulty of real-time muscle force or joint torque estimation during neuromuscular electrical stimulation (NMES) in physical therapy and exercise science has motivated recent research interest in torque estimation from other muscle characteristics. This study investigated the accuracy of a computational intelligence technique for estimating NMES-evoked knee extension torque based on the Mechanomyographic signals (MMG) of contracting muscles that were recorded from eight healthy males. Simulation of the knee torque was modelled via Support Vector Regression (SVR) due to its good generalization ability in related fields. Inputs to the proposed model were MMG amplitude characteristics, the level of electrical stimulation or contraction intensity, and knee angle. Gaussian kernel function, as well as its optimal parameters were identified with the best performance measure and were applied as the SVR kernel function to build an effective knee torque estimation model. To train and test the model, the data were partitioned into training (70%) and testing (30%) subsets, respectively. The SVR estimation accuracy, based on the coefficient of determination (R²) between the actual and the estimated torque values was up to 94% and 89% during the training and testing cases, with root mean square errors (RMSE) of 9.48 and 12.95, respectively. The knee torque estimations obtained using SVR modelling agreed well with the experimental data from an isokinetic dynamometer. These findings support the realization of a closed-loop NMES system for functional tasks using MMG as the feedback signal source and an SVR algorithm for joint torque estimation.
  8. Islam MA, Hamzaid NA, Ibitoye MO, Hasnan N, Wahab AKA, Davis GM
    Clin Biomech (Bristol, Avon), 2018 10;58:21-27.
    PMID: 30005423 DOI: 10.1016/j.clinbiomech.2018.06.020
    BACKGROUND: Investigation of muscle fatigue during functional electrical stimulation (FES)-evoked exercise in individuals with spinal cord injury using dynamometry has limited capability to characterize the fatigue state of individual muscles. Mechanomyography has the potential to represent the state of muscle function at the muscle level. This study sought to investigate surface mechanomyographic responses evoked from quadriceps muscles during FES-cycling, and to quantify its changes between pre- and post-fatiguing conditions in individuals with spinal cord injury.

    METHODS: Six individuals with chronic motor-complete spinal cord injury performed 30-min of sustained FES-leg cycling exercise on two days to induce muscle fatigue. Each participant performed maximum FES-evoked isometric knee extensions before and after the 30-min cycling to determine pre- and post- extension peak torque concomitant with mechanomyography changes.

    FINDINGS: Similar to extension peak torque, normalized root mean squared (RMS) and mean power frequency (MPF) of the mechanomyography signal significantly differed in muscle activities between pre- and post-FES-cycling for each quadriceps muscle (extension peak torque up to 69%; RMS up to 80%, and MPF up to 19%). Mechanomyographic-RMS showed significant reduction during cycling with acceptable between-days consistency (intra-class correlation coefficients, ICC = 0.51-0.91). The normalized MPF showed a weak association with FES-cycling duration (ICC = 0.08-0.23). During FES-cycling, the mechanomyographic-RMS revealed greater fatigue rate for rectus femoris and greater fatigue resistance for vastus medialis in spinal cord injured individuals.

    INTERPRETATION: Mechanomyographic-RMS may be a useful tool for examining real time muscle function of specific muscles during FES-evoked cycling in individuals with spinal cord injury.

  9. Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VS, et al.
    Med Eng Phys, 2016 Aug;38(8):767-75.
    PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012
    The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
  10. Lee RCH, Hasnan N, Engkasan JP
    Spinal Cord, 2018 04;56(4):341-346.
    PMID: 29288252 DOI: 10.1038/s41393-017-0034-2
    STUDY DESIGN: Cross sectional study.

    OBJECTIVES: To determine the prevalence, characteristics of and barriers to driving among persons with a spinal cord injury (SCI).

    SETTING: SCI Rehabilitation Clinic, University Malaya Medical Centre (UMMC).

    METHODS: This is a questionnaire-based study on persons with SCI who attended the UMMC SCI Rehabilitation Clinic between June 2015 and November 2016. The questionnaire comprised demographic data, clinical characteristics, driving variables, Spinal Cord Independence Measure III, WHOQOL-BREF, and Craig Handicap Assessment and Reporting Technique Short Form. Malaysians aged greater than 18 years old with any etiology and levels of SCI, had no other physical disabilities and not suffering from progressive illness were recruited. A single investigator administered the questionnaire via face-to-face interviews.

    RESULTS: A total of 160 participants were included in this study. Overall, 37% of persons with SCI drove and owned a modified vehicle. Almost half of persons with paraplegia (47%) drove, but only 12% of tetraplegia did. A majority (93%) of those who drove aged below 60 years, and had higher level of independence in activity of daily living. More drivers (81%) compared to non-drivers (24%) were employed; drivers also reported better community reintegration and quality of life. Three commonest barriers to driving included medical reasons (38%), fear and lack of confidence (17%), and inability to afford vehicle modifications (13%).

    CONCLUSIONS: The percentage of persons with SCI driving post injury is low. Based on the findings of this study, more efforts are needed to motivate and facilitate persons with SCI to drive.

    Study site: SCI Rehabilitation Clinic, University Malaya Medical Centre (UMMC)
  11. Hamzaid NA, Tean LT, Davis GM, Suhaimi A, Hasnan N
    Spinal Cord, 2015 May;53(5):375-9.
    PMID: 25366533 DOI: 10.1038/sc.2014.187
    STUDY DESIGN: Prospective study of two cases.

    OBJECTIVES: To describe the effects of electrical stimulation (ES) therapy in the 4-week management of two sub-acute spinal cord-injured (SCI) individuals (C7 American Spinal Injury Association Impairment Scale (AIS) B and T9 AIS (B)).

    SETTING: University Malaya Medical Centre, Kuala Lumpur, Malaysia.

    METHODS: A diagnostic tilt-table test was conducted to confirm the presence of orthostatic hypotension (OH) based on the current clinical definitions. Following initial assessment, subjects underwent 4 weeks of ES therapy 4 times weekly for 1 h per day. Post-tests tilt table challenge, both with and without ES on their rectus abdominis, quadriceps, hamstrings and gastrocnemius muscles, was conducted at the end of the study (week 5). Subjects' blood pressures (BP) and heart rates (HR) were recorded every minute during pre-test and post-tests. Orthostatic symptoms, as well as the maximum tolerance time that the subjects could withstand head up tilt at 60°, were recorded.

    RESULTS: Subject A improved his orthostatic symptoms, but did not recover from clinically defined OH based on the 20-min duration requirement. With concurrent ES therapy, 60° head up tilt BP was 89/62 mm Hg compared with baseline BP of 115/71 mm Hg. Subject B fully recovered from OH demonstrated by BP of 105/71 mm Hg during the 60° head up tilt compared with baseline BP of 124/77 mm Hg. Both patients demonstrated longer tolerance time during head up tilt with concomitant ES (subject A: pre-test 4 min, post-test without ES 6 min, post-test with ES 12 min; subject B: pre-test 4 min, post-test without ES 28 min, post-test with ES 60 min).

    CONCLUSIONS: Weekly ES therapy had positive effect on OH management in sub-acute SCI individuals.

  12. Julia PE, Sa'ari MY, Hasnan N
    Spinal Cord, 2011 Nov;49(11):1138-42.
    PMID: 21577218 DOI: 10.1038/sc.2011.53
    STUDY DESIGN: A cross-sectional experimental study.
    OBJECTIVE: The purpose of this study is to examine the benefit of elastic abdominal binders on voluntary cough in persons with spinal cord injury.
    SETTING: Spinal rehabilitation unit in a teaching hospital.
    METHODS: We measured voluntary cough peak expiratory flow rate (in 21 subjects with spinal cord injury, (18 tetraplegia, 3 paraplegia) under three conditions: without abdominal binder as the baseline, with single-strap abdominal binder and triple-strap abdominal binder.
    RESULTS: The results showed that the mean cough peak expiratory flow rate in all subjects without abdominal binder was 277.1 l per min. There was a significant increase in flow rate with the use of abdominal binders: 325.7 l per min with single-strap abdominal binder and 345.2 l per min with triple-strap abdominal binder (P<0.05, paired t-test). The mean cough peak expiratory flow rate in tetraplegic subjects using triple-strap abdominal binders was significantly higher compared with those using single-strap abdomina
    l binders (322.1 l per min and 299.4 l per min, respectively).
    CONCLUSION: Abdominal binders can be used as an effective method to improve cough ability in spinal cord injured patients, with triple-strap abdominal binder achieving greater cough peak expiratory flows.

    Comment in: Frisbie JH. Question of stamina for the diaphragm. Spinal Cord. 2012 Jun;50(6):480. doi: 10.1038/sc.2011.164. Epub 2012 Jan 17. PubMed PMID: 22249332.
  13. Mat Rosly M, Mat Rosly H, Davis Oam GM, Husain R, Hasnan N
    Disabil Rehabil, 2017 04;39(8):727-735.
    PMID: 27108475 DOI: 10.3109/09638288.2016.1161086
    INTRODUCTION: Exergames have the potential to enable persons with disabilities to take part in physical activities that are of appropriate "dose-potency" and enjoyable within a relatively safe home environment. It overcomes some of the challenges regarding transportation difficulties in getting to commercial gymnasium facilities, reducing physical activities perceived as "boring" or getting access into the built environment that may be "wheelchair unfriendly".

    OBJECTIVE: This systematic review assessed available evidence whether "exergaming" could be a feasible modality for contributing to a recommended exercise prescription according to current ACSM™ or WHO guidelines for physical activity.

    METHODS: Strategies used to search for published articles were conducted using separate search engines (Google Scholar™, PubMed™ and Web of Science™) on cardiometabolic responses and perceived exertion during exergaming among neurologically-disabled populations possessing similar physical disabilities. Each study was categorized using the SCIRE-Pedro evidence scale.

    RESULTS: Ten of the 144 articles assessed were identified and met specific inclusion criteria. Key outcome measures included responses, such as energy expenditure, heart rate and perceived exertion. Twelve out of the 17 types of exergaming interventions met the ACSM™ or WHO recommendations of "moderate intensity" physical activity. Exergames such as Wii Jogging, Bicycling, Boxing, DDR and GameCycle reported moderate physical activity intensities. While Wii Snowboarding, Skiing and Bowling only produced light intensities.

    CONCLUSION: Preliminary cross-sectional evidence in this review suggested that exergames have the potential to provide moderate intensity physical activity as recommended by ACSM™ or WHO in populations with neurological disabilities. However, more research is needed to document exergaming's efficacy from longitudinal observations before definitive conclusions can be drawn. Implications for Rehabilitation Exergaming can be deployed as physical activity or exercise using commercially available game consoles for neurologically disabled individuals in the convenience of their home environment and at a relatively inexpensive cost Moderate-to-vigorous intensity exercises can be achieved during exergaming in this population of persons with neurological disabilities. Exergaming can also be engaging and enjoyable, yet achieve the recommended physical activity guidelines proposed by ACSM™ or WHO for health and fitness benefits. Exergaming as physical activity in this population is feasible for individuals with profound disabilities, since it can be used even in sitting position for wheelchair-dependent users, thus providing variability in terms of exercise options. In the context of comprehensive rehabilitation, exergaming should be viewed by the clinician as "at least as good as" (and likely more enjoyable) than traditional arm-exercise modalities, with equivalent aerobic dose-potency as "traditional" exercise in clinic or home environments.

  14. Chek Siang KC, Ahmad Fauzi A, Hasnan N
    J Spinal Cord Med, 2017 01;40(1):113-117.
    PMID: 26871508 DOI: 10.1080/10790268.2015.1133016
    CONTEXT: Infection and septicaemia may clinically presented with seizure and altered conscious level. In spinal cord injury (SCI) population, they are at risk of having pressure ulcer which can be complicated further with infection and septicaemia.

    FINDINGS: A 40-year-old man with complete T4 SCI and multiple clean and non-healing pressure ulcers at sacral and bilateral ischial tuberosity regions was initially admitted for negative pressure wound therapy (NPWT) dressing. He had an episode of seizure and subsequently had fluctuating altered conscious level before the diagnosis of deep-seated sacral abscess was made and managed. Prior investigations to rule out common possible sources of infections and management did not resolve the fluctuating event of altered consciousness.

    CLINICAL RELEVANCE: We presented an unusual case presentation of septicemia in a patient with SCI with underlying chronic non-healing pressure ulcer. He presented with seizure and fluctuating altered conscious level. Even though a chronic non-healing ulcer appeared clinically clean, a high index of suspicion for deep seated abscess is warranted as one of the possible sources of infection, especially when treatment for other common sources of infections fails to result in clinical improvement.

  15. Kassim NK, Hanafi MH, Ibrahim AH, Hasnan N
    Malays Orthop J, 2021 Mar;15(1):135-137.
    PMID: 33880162 DOI: 10.5704/MOJ.2103.022
    The optimisation of blood pressure management is critical in managing hypotensive episodes in patients with spinal cord injury. Improper handling of this preventable factor will negatively impact the patient recovery prognosis. A 42-year-old man was admitted for a complete spinal cord injury after fell from height. He developed subacute neurological deterioration unrelated to the mechanical instability but due to multiple episodes of hypotension occurring one month after the initial injury. After proper management of blood pressure, his deterioration was halted and no further progression. Spinal cord haemodynamics play an important role in mediating the onset of subacute post-traumatic ascending myelopathy. Better education and awareness on Subacute Post-traumatic Ascending Myelopathy (SPAM) especially to the junior healthcare providers are important to hinder this rare but avoidable condition.
  16. Salim MS, Mazlan M, Hasnan N
    Spinal Cord Ser Cases, 2017;3:17043.
    PMID: 28751978 DOI: 10.1038/scsandc.2017.43
    INTRODUCTION: We describe a case of intracerebral haemorrhage (ICH) following uncontrolled episodes of autonomic dysreflexia (AD) within 24 h of a minor urological procedure.

    CASE PRESENTATION: A 33-year-old active paraplegic patient T1 Association Impairment Scale A underwent an elective suprapubic catheter (SPC) placement for bladder management. The surgery was done under general anaesthesia and was uneventful. Four hours after surgery, he developed haematuria and multiple blood clots in the urine, which eventually caused blockage of the SPC and resulted in symptomatic AD. The clots and blockage persisted, which continued to trigger repeated episodes of increased blood pressure (BP) and AD. Despite medical treatment with sublingual nitrate to lower the increased BP, the patient subsequently developed massive left ICH presenting with right upper limb weakness, facial asymmetry and inability to speak. He continued to have fluctuating BP measurements for 11 days post event with severe hypertensive and hypotensive episodes. This presented a challenge in the BP management as well as post-ICH management. He underwent an intensive neurorehabilitation programme as soon as the BP had stabilized.

    DISCUSSION: Severe neurological complications of AD are rare. In this case report, we highlight the importance of close monitoring of BP and AD symptoms after an SPC procedure, the challenges in BP management and the subsequent importance of an early rehabilitation programme after ICH secondary to uncontrolled AD.

  17. Dzulkifli MA, Hamzaid NA, Davis GM, Hasnan N
    Front Neurorobot, 2018;12:50.
    PMID: 30147650 DOI: 10.3389/fnbot.2018.00050
    This study sought to design and deploy a torque monitoring system using an artificial neural network (ANN) with mechanomyography (MMG) for situations where muscle torque cannot be independently quantified. The MMG signals from the quadriceps were used to derive knee torque during prolonged functional electrical stimulation (FES)-assisted isometric knee extensions and during standing in spinal cord injured (SCI) individuals. Three individuals with motor-complete SCI performed FES-evoked isometric quadriceps contractions on a Biodex dynamometer at 30° knee angle and at a fixed stimulation current, until the torque had declined to a minimum required for ANN model development. Two ANN models were developed based on different inputs; Root mean square (RMS) MMG and RMS-Zero crossing (ZC) which were derived from MMG. The performance of the ANN was evaluated by comparing model predicted torque against the actual torque derived from the dynamometer. MMG data from 5 other individuals with SCI who performed FES-evoked standing to fatigue-failure were used to validate the RMS and RMS-ZC ANN models. RMS and RMS-ZC of the MMG obtained from the FES standing experiments were then provided as inputs to the developed ANN models to calculate the predicted torque during the FES-evoked standing. The average correlation between the knee extension-predicted torque and the actual torque outputs were 0.87 ± 0.11 for RMS and 0.84 ± 0.13 for RMS-ZC. The average accuracy was 79 ± 14% for RMS and 86 ± 11% for RMS-ZC. The two models revealed significant trends in torque decrease, both suggesting a critical point around 50% torque drop where there were significant changes observed in RMS and RMS-ZC patterns. Based on these findings, both RMS and RMS-ZC ANN models performed similarly well in predicting FES-evoked knee extension torques in this population. However, interference was observed in the RMS-ZC values at a time around knee buckling. The developed ANN models could be used to estimate muscle torque in real-time, thereby providing safer automated FES control of standing in persons with motor-complete SCI.
  18. Hashim NM, Engkasan JP, Hasnan N
    J Spinal Cord Med, 2022 Nov;45(6):898-906.
    PMID: 33465010 DOI: 10.1080/10790268.2020.1860868
    STUDY DESIGN: Pre- and post- trial.

    OBJECTIVES: To determine the changes of health belief levels after a pressure ulcer (PrU) prevention educational program based on the Health Belief Model (HBM).

    SETTING: Department of Rehabilitation Medicine, University Medical Centre, Malaysia.

    METHODS: This study was conducted between May 2016 and May 2018. We created a multidisciplinary structured PrU prevention education program based on the HBM, consisting of didactic lectures, open discussions and a practical session. The content of the program was based on several PrU prevention guidelines. The education program focused on a group of 6-10 participants, and was conducted by a multidisciplinary team; i.e. doctor, physiotherapist, occupational therapist and a nurse. The skin care belief scales (SCBS) questionnaire was administered pre, post and 8-week post intervention, which measured the 9 domains of HBM. The data from the study was analyzed using repeated measures ANOVA to assess the effectiveness of the program.

    RESULTS: Thirty spinal cord injured participants who fulfilled the inclusion and exclusion criteria completed this study. The results of the education program show statistically significant effects on Susceptibility; F (2,58) = 12.53, P < 0.05, Barriers to Skin Check Belief; F(2,58) = 5.74, P > 0.05, Benefits to Wheelchair Pressure Relief Belief; F(1.65,47.8) = 3.97, P < 0.05, Barriers to Turning and Positioning Belief; F(2,58) = 3.92, P 

  19. Abd Aziz M, Hamzaid NA, Hasnan N
    J Vis Exp, 2022 Nov 11.
    PMID: 36440840 DOI: 10.3791/63149
    Execution of Sit-to-Stand (SitTS) in incomplete spinal cord injury (SCI) patients involves motor function in both upper and lower extremities. The use of arm support, in particular, is a significant assistive factor while executing SitTS movement in SCI population. In addition, the application of functional electrical stimulation (FES) onto quadriceps and gluteus maximus muscles is one of the prescribed management for incomplete SCI to improve muscle action for simple lower limb movements. However, the relative contribution of upper and lower extremities during SitTS has not been thoroughly investigated. Two motor incomplete SCI paraplegics performed repetitive SitTS to fatigue exercise challenge. Their performance was investigated as a mixed-method case-control study comparing SitTS with and without the assistance of FES. Three sets of SitTS tests were completed with 5-min resting period allocated in between sets, with mechanomyography (MMG) sensors attached over the rectus femoris muscles bilaterally. The exercise was separated into 2 sessions; Day 1 for voluntary SitTS and Day 2 for FES-assisted SitTS. Questionnaires were conducted after every session to gather the participants' input about their repetitive SitTS experience. The analysis confirmed that a SitTS cycle could be divided into three phases; Phase 1 (Preparation to stand), Phase 2 (Seat-off), and Phase 3 (Initiation of hip extension), which contributed to 23% ± 7%, 16% ± 4% and 61% ± 6% of the SitTS cycle, respectively. The contribution of arms and legs during SitTS movement varied in different participants based on their legs' Medical Research Council (MRC) muscle grade. In particular, the applied arm forces start to increase clearly when the leg forces start to decline during standing. This finding is supported by the significantly reduced MMG signal indicating leg muscle fatigue and their reported feeling of tiredness.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links