Displaying publications 1 - 20 of 65 in total

Abstract:
Sort:
  1. Kazi RN, Sattar MA, Abdullah NA, Khan MA, Rathore HA, Abdulla MH, et al.
    Yakugaku Zasshi, 2011 Mar;131(3):431-6.
    PMID: 21372540
    α(1D)-adrenoceptors are involved in the genesis/maintenance of hypertension in spontaneously hypertensive rats (SHR). This study aims to investigate the role of α(1D)-adrenoceptors in the antinatriuretic and antidiuretic responses in SHR subjected to high sodium (SHRHNa) and normal sodium (SHRNNa) intake for six weeks. Renal inulin clearance study was performed in which the antinatriuretic and antidiuretic responses to phenylephrine were examined in the presence and absence of α(₁D)-adrenoceptors blocker BMY7378. Data, mean±S.E.M. were subjected to ANOVA with significance at p<0.05. Results show that feeding SHR for six weeks with high salt did not cause any change in blood pressure. SHRHNa had higher (all p<0.05) urine flow rate (UFR), fractional and absolute excretion of sodium (FE(Na) and U(Na)V) compared to SHRNNa. Phenylephrine infusion produced significant reduction in UFR, FE(Na) and U(Na)V in both SHRHNa and SHRNNa. The antidiuretic and antinatriuretic responses to phenylephrine in both groups were attenuated in the presence of BMY7378. Moreover, the antidiuretic and antinatriuretic responses to phenylephrine and BMY7378 were independent on any significant changes in renal and glomerular hemodynamics in both groups. Thus we conclude that high sodium intake did not bring any further increase in blood pressure of SHR, however, it results in exaggerated natriuresis and diuresis in SHRHNa. Irrespective of dietary sodium changes, α₁-adrenoceptors are involved in mediating the antinatriuretic and antidiuretic responses to phenylephrine in SHR. Further, high sodium intake did not significantly influence the functionality of α(₁D)-adrenoceptors in mediating the adrenergically induced antinatriuresis and antidiuresis.
  2. Abdulla MH, Sattar MA, Abdullah NA, Khan AH, Anand Swarup KR, Rathore HA, et al.
    Ups. J. Med. Sci., 2011 Mar;116(1):18-25.
    PMID: 21047287 DOI: 10.3109/03009734.2010.526723
    This study examined the effect of renal sympathetic innervation on adrenergically and angiotensin II (Ang II)-induced renal vasoconstriction in Wistar-Kyoto (WKY) rats.
  3. Kiew LV, Munavvar AS, Law CH, Azizan AN, Nazarina AR, Sidik K, et al.
    J Physiol, 2004 Jun 15;557(Pt 3):981-9.
    PMID: 15047774
    An antisense oligodeoxynucleotide (As-ODN) to the 3' untranslated region of the mRNA sequence expressing the intracellular adhesion molecule-1 (ICAM-1) was employed to determine ICAM-1's role in renal ischaemia-reperfusion injury in the rat. Wistar-Kyoto rats receiving i.v. either lipofectin-As-ODN (As-ODN group), lipofectin-reverse ODN (Rv-ODN group) or lipofectin (ischaemia control group) 8 h prior to study were anaesthetized and subjected to 30 min of renal artery occlusion. Renal haemodynamic and excretory parameters were monitored before and after renal ischaemia. On termination of the study renal tissue was subjected to histological and Western blot analysis. Renal blood flow decreased in the 3 h post-ischaemia period in the ischaemia control and Rv-ODN groups, but was maintained in the As-ODN group. Glomerular filtration rate was depressed initially but gradually increased to 10% above basal levels in the ischaemia control and Rv-ODN groups, but was below basal levels (20%) in the As-ODN group. There was a three- to fourfold increase in sodium and water excretion following ischaemia in the ischaemia control and reverse-ODN groups but not in the As-ODN treated group. The As-ODN ameliorated the histological evidence of ischaemic damage and reduced ICAM-1 protein levels to a greater extent in the medulla than cortex. These observations suggested that in the post-ischaemic period afferent and efferent arteriolar tone was increased with a loss of reabsorptive capacity which was in part due to ICAM-1. The possibility arises that the action of ICAM-1 at vascular and tubular sites in the deeper regions of the kidney contributes to the ischaemia-reperfusion injury.
  4. Salman IM, Sattar MA, Ameer OZ, Abdullah NA, Yam MF, Salman HM, et al.
    Indian J Med Res, 2010 Jun;131:786-92.
    PMID: 20571167
    A wealth of information concerning the essential role of renal sympathetic nerve activity (RSNA) in the regulation of renal function and mean arterial blood pressure homeostasis has been established. However, many important parameters with which RSNA interacts are yet to be explicitly characterized. Therefore, the present study aimed to investigate the impact of acute renal denervation (ARD) on sodium and water excretory responses to intravenous (iv) infusions of either norepinephrine (NE) or angiotensin II (Ang II) in anaesthetized spontaneously hypertensive rats (SHR).
  5. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Hussain FB, Hye Khan MA, et al.
    Indian J Med Res, 2010 Jan;131:76-82.
    PMID: 20167977
    Regulation of renal function and haemodynamics are under a direct control from the renal sympathetic nerves and renal denervation produces overt diuresis and natriuresis in several mammalian species. However, the inter-related series of changes in renal function and haemodynamics following acute renal denervation (ARD) is not fully understood. Thus, we aimed to investigate and relate the changes in renal function and haemodynamics following acute unilateral renal denervation in anaesthetized Sprague Dawley (SD) rats.
  6. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Hye Khan MA, Rathore HA
    Br J Nutr, 2012 Jan;107(2):218-28.
    PMID: 21733307 DOI: 10.1017/S0007114511002716
    The present study explored the hypothesis that a prolonged 8 weeks exposure to a high fructose intake suppresses adrenergic and angiotensin II (Ang II)-mediated vasoconstriction and is associated with a higher contribution of α1D-adrenoceptors. A total of thirty-two Sprague-Dawley rats received either 20 % fructose solution (FFR) or tap water (control, C) to drink ad libitum for 8 weeks. Metabolic and haemodynamic parameters were assessed weekly. The renal cortical vasoconstrictor responses to noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined in the presence and absence of BMY7378 (α1D-adrenoceptor antagonist). FFR had increased blood pressure, plasma levels of glucose, TAG and insulin. FFR expressed reduced renal vascular responses to adrenergic agonists and Ang II (NA: 50 %, PE: 50 %, ME, 65 %, Ang II: 54 %). Furthermore in the C group, the magnitude of the renal cortical vasoconstriction to all agonists was blunted in the presence of the low or high dose of BMY7378 (NA: 30 and 31 %, PE: 23 and 33 %, ME: 19 and 44 %, Ang II: 53 and 77 %), respectively, while in the FFR, vasoconstriction was enhanced to adrenergic agonists and reduced to Ang II (NA: 8 and 83 %, PE: 55 %, ME, 2 and 177 %, Ang II: 61 and 31 %). Chronic high fructose intake blunts vascular sensitivity to adrenergic agonists and Ang II. Moreover, blocking of the α1D-adrenoceptor subtype results in enhancement of renal vasoconstriction to adrenergic agonists, suggesting an inhibitory action of α1D-adrenoceptors in the FFR. α1D-Adrenoceptors buffer the AT1-receptor response in the renal vasculature of normal rats and fructose feeding suppressed this interaction.
  7. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
  8. Chia TY, Sattar MA, Abdulla MH, Rathore HA, Ahmad Fu, Kaur G, et al.
    Ren Fail, 2013 Aug;35(7):978-88.
    PMID: 23822648 DOI: 10.3109/0886022X.2013.809563
    This study investigated the effects of tempol, a superoxide dismutase (SOD) mimetic and L-NAME, a nitric oxide (NO) synthase inhibitor on the renal function and hemodynamics in cyclosporine A (CsA) induced renal insufficiency rats. Male Sprague-Dawley rats were treated with either vehicle (C), tempol (T, 1 mmol/L in drinking fluid), L-NAME (L, 1 mmol/L in drinking fluid), CsA (Cs, 25 mg/kg/day via gavage), CsA plus tempol (TCs), CsA plus L-NAME (LCs) or CsA plus a combination of tempol and L-NAME (TLCs) for 21 consecutive days. At the end of treatment regimen, the renal responses to noradrenaline (NA), phenylephrine (PE), methoxamine and angiotensin II (Ang II) were determined. Cs and LCs rats had lower creatinine clearance (0.7 ± 0.1 and 0.6 ± 0.5 vs. 1.3 ± 0.2 mL/min/kg) and fractional excretion of sodium (0.12 ± 0.02 and 0.17 ± 0.01 vs. 0.67 ± 0.04%) but higher systolic blood pressure (145 ± 2 and 178 ± 4 vs. 116 ± 2) compared to the control (all p 
  9. Ahmad FU, Sattar MA, Rathore HA, Abdullah MH, Tan S, Abdullah NA, et al.
    Ren Fail, 2012;34(2):203-10.
    PMID: 22229751 DOI: 10.3109/0886022X.2011.643365
    The coexistence of hypertension and diabetes results in the rapid development of nephropathy. Hydrogen sulfide (H2S) is claimed to control the vascular and renal functions. This study tested the hypothesis that exogenous H2S lowers the blood pressure and decreases the progression of nephropathy in spontaneously hypertensive rats (SHR) that were diabetic. Eighteen SHR were divided into three groups: SHR, SHR diabetic, and SHR diabetic treated with a group of Wistar-Kyoto rats serving as normotensive nondiabetic control. Diabetes was induced with streptozotocin (STZ) in two groups and one diabetic group received sodium hydrosulfide (NaHS), a H2S donor for 5 weeks. Blood pressure was measured in conscious and anesthetized states and renal cortical blood perfusion in acute studies. Plasma and urinary H2S levels, creatinine concentrations, and electrolytes were measured on three different occasions throughout the 35-day period. Diabetic SHR had higher blood pressure, lower plasma and urinary H2S levels, and renal dysfunction as evidenced by increased plasma creatinine, creatinine clearance, and decreased urinary sodium-to-potassium ratio and renal cortical blood perfusion. NaHS reduced blood pressure, increased H2S levels in plasma and urinary excretion, and reversed the STZ-induced renal dysfunction. The findings of this study suggest that the administration of exogenous H2S lowers the blood pressure and confers protection against the progression of STZ-induced nephropathy in SHR.
  10. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Yam MF, Kaur G, et al.
    Ren Fail, 2010 Jan;32(1):96-102.
    PMID: 20113274 DOI: 10.3109/08860220903389196
    The role of renal sympathetic nerves in the pathogenesis of ischemic acute renal failure (ARF) and the immediate changes in the renal excretory functions following renal ischemia were investigated. Two groups of male Sprague Dawley (SD) rats were anesthetized (pentobarbitone sodium, 60 mg kg(-1) i.p.) and subjected to unilateral renal ischemia by clamping the left renal artery for 30 min followed by reperfusion. In group 1, the renal nerves were electrically stimulated and the responses in the renal blood flow (RBF) and renal vascular resistance (RVR) were recorded, while group 2 was used to study the early changes in the renal functions following renal ischemia. In post-ischemic animals, basal RBF and the renal vasoconstrictor reperfusion to renal nerve stimulation (RNS) were significantly lower (all p < 0.05 vs. control). Mean arterial pressure (MAP), basal RVR, urine flow rate (UFR), absolute and fractional excretions of sodium (U(Na)V and FE(Na)), and potassium (U(K)V and FE(K)) were higher in ARF rats (all p < 0.05 vs. control). Post-ischemic animals showed markedly lower glomerular filtration rate (GFR) (p < 0.05 vs. control). No appreciable differences were observed in urinary sodium to potassium ratio (U(Na)/U(K)) during the early reperfusion phase of renal ischemia (p > 0.05 vs. control). The data suggest an immediate involvement of renal sympathetic nerve action in the pathogenesis of ischemic ARF primarily through altered renal hemodynamics. Diuresis, natriuresis, and kaliuresis due to impaired renal tubular functions are typical responses to renal ischemia and of comparable magnitudes.
  11. Ahmad A, Sattar MA, Azam M, Abdulla MH, Khan SA, Hashmi F, et al.
    PLoS One, 2016;11(5):e0154995.
    PMID: 27191852 DOI: 10.1371/journal.pone.0154995
    The purpose of the present study was to investigate the interaction between H2S and NO (nitric oxide) in the kidney and to evaluate its impact on the functional contribution of α1A and α1B-adrenoreceptors subtypes mediating the renal vasoconstriction in the kidney of rats with left ventricular hypertrophy (LVH). In rats the LVH induction was by isoprenaline administration and caffeine in the drinking water together with intraperitoneal administration of H2S. The responsiveness of α1A and α1B to exogenous noradrenaline, phenylephrine and methoxaminein the absence and presence of 5-methylurapidil (5-MeU) and chloroethylclonidine (CEC) was studied. Cystathione gamma lyase (CSE), cystathione β synthase (CBS), 3-mercaptopyruvate sulphar transferase (3-MST) and endothelial nitric oxide synthase (eNOS) were quantified. There was significant up regulation of CSE and eNOS in the LVH-H2S compared to the LVH group (P<0.05). Baseline renal cortical blood perfusion (RCBP) was increased (P<0.05) in the LVH-H2S compared to the LVH group. The responsiveness of α1A-adrenergic receptors to adrenergic agonists was increased (P<0.05) after administration of low dose 5-Methylurapidil in the LVH-H2S group while α1B-adrenergic receptors responsiveness to adrenergic agonists were increased (P<0.05) by both low and high dose chloroethylclonidine in the LVH-H2S group. Treatment of LVH with H2S resulted in up-regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways in the kidney. These up regulation of CSE/H2S, CBS, and 3-MST and eNOS/NO/cGMP pathways enhanced the responsiveness of α1A and α1B-adrenoreceptors subtypes to adrenergic agonists in LVH-H2S. These findings indicate an important role for H2S in modulating deranged signalling in the renal vasculature resulting from LVH development.
  12. Afzal S, Abdul Sattar M, Johns EJ, Eseyin OA
    PLoS One, 2020;15(11):e0229803.
    PMID: 33170841 DOI: 10.1371/journal.pone.0229803
    Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
  13. Tan YC, Abdul Sattar M, Ahmeda AF, Abdul Karim Khan N, Murugaiyah V, Ahmad A, et al.
    PLoS One, 2020;15(4):e0231472.
    PMID: 32298299 DOI: 10.1371/journal.pone.0231472
    Oxidative stress is involved in the pathogenesis of a number of diseases including hypertension and renal failure. There is enhanced expression of nicotinamide adenine dinucleotide (NADPH oxidase) and therefore production of hydrogen peroxide (H2O2) during renal disease progression. This study investigated the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on Cyclosporine A (CsA) nephrotoxicity in Wistar-Kyoto rats. Rats received CsA (25mg/kg/day via gavage) and were assigned to vehicle, apocynin (2.5mmol/L p.o.), catalase (10,000U/kg/day i.p.) or apocynin plus catalase for 14 days. Renal functional and hemodynamic parameters were measured every week, and kidneys were harvested at the end of the study for histological and NADPH oxidase 4 (NOX4) assessment. Oxidative stress markers and blood urea nitrogen (BUN) were measured. CsA rats had higher plasma malondialdehyde (by 340%) and BUN (by 125%), but lower superoxide dismutase and total antioxidant capacity (by 40%, all P<0.05) compared to control. CsA increased blood pressure (by 46mmHg) and decreased creatinine clearance (by 49%, all P<0.05). Treatment of CsA rats with apocynin, catalase, and their combination decreased blood pressure to near control values (all P<0.05). NOX4 mRNA activity was higher in the renal tissue of CsA rats by approximately 63% (P<0.05) compared to controls but was reduced in apocynin (by 64%), catalase (by 33%) and combined treatment with apocynin and catalase (by 84%) compared to untreated CsA rats. Treatment of CsA rats with apocynin, catalase, and their combination prevented hypertension and restored renal functional parameters and tissue Nox4 expression in this model. NADPH inhibition and H2O2 scavenging is an important therapeutic strategy during CsA nephrotoxicity and hypertension.
  14. Ahmad A, Sattar MA, Azam M, Khan SA, Bhatt O, Johns EJ
    PLoS One, 2018;13(2):e0189386.
    PMID: 29447158 DOI: 10.1371/journal.pone.0189386
    Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric oxide donors are known to have antihypertrophic effects however their impact on responsiveness of renal α1-adrenoreceptors subtypes is unknown. This study investigated the impact of nitric oxide (NO) and its potential interaction with the responsiveness of renal α1-adrenoreceptors subtypes to adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This study also explored the impact of NO donor on CSE expression in normal and LVH kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2 weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5 weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were determined in the absence and presence of selective α1-adrenoceptor antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378. Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold while that of cystathione γ lyase was unaltered in the NO treated LVH rats (LVH-NO) group compared to LVH group. The responsiveness of renal α1A, α1B and α1D-adrenoceptors in the low dose and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was increased along with cGMP in the kidney of LVH-NO group. These findings suggest that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH rats and resulted in augmented α1A, α1B and α1D adrenoreceptors responsiveness to the adrenergic agonists. There is a positive interaction between H2S and NO production in normal animals but this interaction appears absent in LVH animals.
  15. Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, et al.
    PLoS One, 2016;11(3):e0150137.
    PMID: 26963622 DOI: 10.1371/journal.pone.0150137
    Hydrogen sulphide (H2S) is an emerging molecule in many cardiovascular complications but its role in left ventricular hypertrophy (LVH) is unknown. The present study explored the effect of exogenous H2S administration in the regression of LVH by modulating oxidative stress, arterial stiffness and expression of cystathione γ lyase (CSE) in the myocardium. Animals were divided into four groups: Control, LVH, Control-H2S and LVH-H2S. LVH was induced by administering isoprenaline (5mg/kg, every 72 hours, S/C) and caffeine in drinking water (62mg/L) for 2 weeks. Intraperitoneal NaHS, 56μM/kg/day for 5 weeks, was given as an H2S donor. Myocardial expression of Cystathione γ lyase (CSE) mRNA was quantified using real time polymerase chain reaction (qPCR).There was a 3 fold reduction in the expression of myocardial CSE mRNA in LVH but it was up regulated by 7 and 4 fold in the Control-H2S and LVH-H2S myocardium, respectively. Systolic blood pressure, mean arterial pressure, pulse wave velocity were reduced (all P<0.05) in LVH-H2S when compared to the LVH group. Heart, LV weight, myocardial thickness were reduced while LV internal diameter was increased (all P<0.05) in the LVH-H2S when compared to the LVH group. Exogenous administration of H2S in LVH increased superoxide dismutase, glutathione and total antioxidant capacity but significantly reduced (all P<0.05) plasma malanodialdehyde in the LVH-H2S compared to the LVH group. The renal cortical blood perfusion increased by 40% in LVH-H2S as compared to the LVH group. Exogenous administration of H2S suppressed the progression of LVH which was associated with an up regulation of myocardial CSE mRNA/ H2S and a reduction in pulse wave velocity with a blunting of systemic hemodynamic. This CSE/H2S pathway exhibits an antihypertrophic role by antagonizing the hypertrophic actions of angiotensin II(Ang II) and noradrenaline (NA) but attenuates oxidative stress and improves pulse wave velocity which helps to suppress LVH. Exogenous administration of H2S augmented the reduced renal cortical blood perfusion in the LVH state.
  16. Chia TY, Murugaiyah V, Khan NA, Sattar MA, Abdulla MH, Johns EJ, et al.
    Physiol Res, 2021 03 17;70(1):13-26.
    PMID: 33728924
    Reactive oxygen species (ROS) such as superoxide (O2-) generated by NAD(P)H oxidases have emerged as important molecules in blood pressure regulation. This study investigated the effect of apocynin and catalase on blood pressure and renal haemodynamic and excretory function in an L-NAME induced hypertension model. Forty Male Wistar-Kyoto (WKY) rats (n=8 per group) were treated with either: vehicle (WKY-C); L-NAME (WKY-L, 15 mg/kg/day in drinking fluid); WKY-L given apocynin to block NAD(P)H oxidase (WKY-LApo, 73 mg/kg/day in drinking water.); WKY-L given catalase to enhance ROS scavenging (WKY-LCat, 10000 U/kg/day i.p.); and WKY-L receiving apocynin plus catalase (WKY-LApoCat) daily for 14 days. L-NAME elevated systolic blood pressure (SBP), 116+/-1 to 181±4 mmHg, reduced creatinine clearance, 1.69+/-0.26 to 0.97+/-0.05 ml/min/kg and fractional sodium excretion, 0.84+/-0.09 to 0.55+/-0.09 % at day 14. Concomitantly, plasma malondialdehyde (MDA) increased six fold, while plasma total superoxide dismutase (T-SOD), plasma nitric oxide (NO) and plasma total antioxidant capacity (T-AOC) were decreased by 60-70 % and Nox 4 mRNA expression was increased 2-fold. Treatment with apocynin and catalase attenuated the increase in SBP and improved renal function, enhanced antioxidative stress capacity and reduced the magnitude of Nox4 mRNAs expression in the L-NAME treated rats. This study demonstrated that apocynin and catalase offset the development of L-NAME induced hypertension, renal dysfunction and reduced oxidative stress status, possibly contributed by a reduction in Nox4 expression during NOS inhibition. These findings would suggest that antioxidant compounds such as apocynin and catalase have potential in treating cardiovascular diseases.
  17. Chia TY, Murugaiyah V, Sattar MA, Khan NAK, Ahmad A, Abdulla MH, et al.
    Physiol Res, 2020 12 22;69(6):1051-1066.
    PMID: 33210935
    L-arginine is a substrate for nitric oxide synthase (NOS) responsible for the production of NO. This investigation studied the effect of apocynin, an NADPH oxidase inhibitor and catalase, an H2O2 scavenger on L-arginine induced oxidative stress and hypotension. Forty Wistar-Kyoto rats were treated for 14 days with vehicle, L-arginine (12.5mg/ml p.o.), L-arginine+apocynin (2.5mmol/L p.o.), L-arginine+catalase (10000U/kg/day i.p.) and L-arginine plus apocynin+catalase respectively. Weekly renal functional and hemodynamic parameters were measured and kidneys harvested at the end of the study for histopathological and renal NADPH oxidase 4 (Nox4) assessments. L-arginine administration in normotensive rats decreased systolic blood pressure (120±2 vs 91±2mmHg) and heart rate (298±21 vs 254±15b/min), enhanced urinary output (21.5±4.2 vs 32±1.9ml/24h , increased creatinine clearance (1.72±0.56 vs 2.62±0.40ml/min/kg), and fractional sodium excretion (0.88±0.16 vs 1.18±0.16 %), caused proteinuria (28.10±1.93 vs 35.26±1.69mg/kg/day) and a significant decrease in renal cortical blood perfusion (292±3 vs 258±5bpu) and pulse wave velocity (3.72±0.20 vs 2.84±0.13m/s) (all P<0.05). L-arginine increased plasma malondialdehyde (by ~206 % P<0.05) and NO (by~51 %, P<0.05) but decreased superoxide dismutase (by~31 %, P<0.05) and total antioxidant capacity (by~35 %, P<0.05) compared to control. Renal Nox4 mRNA activity was approximately 2.1 fold higher (P<0.05) in the L-arginine treated rats but was normalized by apocynin and apocynin plus catalase treatment. Administration of apocynin and catalase, but not catalase alone to rats fed L-arginine, restored the deranged renal function and structure, prevented hypotension and enhanced the antioxidant capacity and suppressed Nox4 expression. These findings suggest that apocynin and catalase might be used prophylactically in states of oxidative stress.
  18. Anand Swarup KR, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Rathore HA, et al.
    Pharmacognosy Res, 2010 Jan;2(1):31-5.
    PMID: 21808536 DOI: 10.4103/0974-8490.60582
    Cardiovascular complications are consistently observed in diabetic patients across all age groups. The objective of the present study was to investigate the effect of aqueous extract of the fruit pulp of Hylocereus undatus (DFE) on aortic stiffness and oxidative stress in streptozotocin (STZ)-induced diabetes in rats. Twenty-four male, Sprague-Dawley rats were randomized into four groups: I (control), II (diabetic), III (DFE, 250 mg/kg) and IV (DFE 500 mg/kg). Diabetes was induced in groups II, III and IV by intraperitoneal (i.p.) injection of STZ (40 mg/kg). After confirmation of diabetes, group III and IV received DFE for 5 weeks. Pulse wave velocity (PWV) was used as a marker of aortic stiffness and was determined at the end of 5 weeks. DFE significantly decreased (P < 0.05) the fasting blood glucose levels in diabetic rats, but not to normal levels. Systolic blood pressure, pulse pressure and PWV were significantly increased (P < 0.05) in diabetic rats at the end of 5 weeks in comparison with control group. DFE treatment significantly decreased (P < 0.05) these elevations. Oxidative damage was observed in group II after 5 weeks. Plasma malondialdehyde levels significantly decreased (P < 0.05), while superoxide dismutase and total antioxidant capacity significantly increased (P < 0.05) with DFE treatment in comparison with group II. These data demonstrate that DFE treatment was effective in controlling oxidative damage and decreasing the aortic stiffness measured by PWV in STZ-induced diabetes in rats.
  19. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    Pathology, 2010 Apr;42(3):259-66.
    PMID: 20350220 DOI: 10.3109/00313021003631304
    We investigated the role of renal sympathetic innervation in the deterioration of renal haemodynamic and excretory functions during the early post-ischaemic phase of renal ischaemia/reperfusion injury.
  20. Abdulla MH, Sattar MA, Abdullah NA, Johns EJ
    Pak J Pharm Sci, 2013 Jul;26(4):727-32.
    PMID: 23811449
    Effect of losartan was assessed on systemic haemodynamic responses to angiotensin II (Ang II) and adrenergic agonists in the model of high-fructose-fed rat. Twenty-four Sprague-Dawley (SD) rats were fed for 8 weeks either 20% fructose solution (FFR) or tap water (C) ad libitum. FFR or C group received losartan (10mg/kg/day p.o.) for 1 week at the end of feeding period (FFR-L and L) respectively, then the vasopressor responses to Ang II, noradrenaline (NA), phenylephrine (PE) and methoxamine (ME) were determined. The responses (%) to NA, PE, ME and Ang II in FFR were lower (P<0.05) than C (FFR vs. C; 22±2 vs. 32±2, 30±3 vs. 40±3, 9±1 vs. 13±1, 10±1 vs. 17±1) respectively. L group had blunted (P<0.05) responses to NA, PE, ME and Ang II compared to C (L vs. C; 26±2 vs. 32±2, 30±3 vs. 40±3, 7±0.7 vs. 13±1, 5±0.4 vs. 17±1) respectively. FFR-L group had aggravated (P<0.05) response to NA and ME, but blunted response to Ang II compared to FFR (FFR-L vs. FFR; 39±3 vs. 22±2, 11±1 vs. 9±1, 3±0.4 vs. 10±1) respectively. Fructose intake for 8 weeks results in smaller vasopressor response to adrenergic agonists and Ang II. Data also demonstrated an important role played by Ang II in the control of systemic haemodynamics in FFR and point to its interaction with adrenergic neurotransmission.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links