Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
  2. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
  3. Nge CE, Sim KS, Lim SH, Thomas NF, Low YY, Kam TS
    J Nat Prod, 2016 10 28;79(10):2709-2717.
    PMID: 27759387
    Examination of the EtOH extract of the Malayan Tabernaemontana corymbosa resulted in the isolation of three new alkaloids, viz., cononuridine (1), an unusual hexacyclic, iboga-derived, monoterpenoid indole characterized by contraction of the tetrahydroazepine C-ring and incorporation of an additional isoxazolidine ring, taberisidine (2), a seco-corynanthean alkaloid, and conofolidine (3), an Aspidosperma-Aspidosperma bisindole that showed pronounced in vitro growth inhibitory activity against an array of human cancer cell lines, including KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, and HCT 116 cells. The structures and absolute configurations of 1 and 3 and the absolute configuration of the novel pyridopyrimidine indole alkaloid vernavosine (4) were confirmed by X-ray diffraction analysis. A reasonable biosynthesis route to cononuridine starting from an iboga precursor is presented.
  4. Lim SH, Mahmood K, Komiyama K, Kam TS
    J Nat Prod, 2008 Jun;71(6):1104-6.
    PMID: 18462006 DOI: 10.1021/np800123g
    A new cycloartane, monocarpinine (1), incorporating a fused tetrahydrofuranyl ring, and a cytotoxic tetracyclic lactam, monomarginine (2), were isolated from a stem bark extract of the Malayan species Monocarpia marginalis. The structures of these compounds were determined using NMR and MS analysis. Monomarginine (2) showed appreciable cytotoxicity toward human KB (both drug-sensitive and drug-resistant) and Jurkat cells.
  5. Kam TS, Choo YM
    Phytochemistry, 2004 Mar;65(5):603-8.
    PMID: 15003424
    Six new alkaloids, viz., alstolactone, affinisine oxindole, lagumicine, N(4)-demethylalstonerine, N(4)-demethylalstonerinal, and 10-methoxycathafoline N(4)-oxide, in addition to 36 other known alkaloids, were obtained from the leaf extract of Alstonia angustifolia var. latifolia. The structures of the new alkaloids were determined using NMR and MS analysis.
  6. Kam TS, Lim KH
    Alkaloids Chem Biol, 2008;66:1-111.
    PMID: 19025097
  7. Low YY, Gan CY, Kam TS
    J Nat Prod, 2014 Jun 27;77(6):1532-5.
    PMID: 24832351 DOI: 10.1021/np500289t
    Racemic andransinine (1), an indole alkaloid derivative obtained during isolation of alkaloids from Alstonia angustiloba and Kopsia pauciflora, was found to undergo spontaneous resolution when crystallized in EtOAc, forming racemic conglomerates (an equimolar mechanical mixture of enantiomerically pure individual crystals). X-ray analyses of the enantiomers (obtained from crystals from EtOAc solution and from chiral-phase HPLC) provided the absolute configuration of each enantiomer as (15R,16S,21R)-(+)-andransinine (1a or I+) and (15S,16R,21S)-(-)-andransinine (1b or I-).
  8. Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS
    Phytochemistry, 2011 Dec;72(17):2212-8.
    PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001
    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
  9. Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, et al.
    Planta Med, 2022 Nov;88(14):1325-1340.
    PMID: 35100653 DOI: 10.1055/a-1755-5605
    Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
  10. Abuzaid H, Abdelrazig S, Ferreira L, Collins HM, Kim DH, Lim KH, et al.
    ACS Omega, 2022 Jun 28;7(25):21473-21482.
    PMID: 35785302 DOI: 10.1021/acsomega.2c00997
    The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 μM), targeting microtubule dynamics. By exploiting breast cancer cells' upregulated transferrin receptor 1 (TfR1) expression and apoferritin (AFt) recognition, we sought to develop an AFt JAa-delivery vehicle to enhance tumor-targeting and reduce systemic toxicity. Optimizing pH-mediated reassembly, ∼120 JAa molecules were entrapped within AFt. Western blot and flow cytometry demonstrate TfR1 expression in cancer cells. Enhanced internalization of 5-carboxyfluorescein-conjugated human AFt in SKBR3 and MDA-MB-231 cancer cells is observed compared to MRC5 fibroblasts. Accordingly, AFt-JAa delivers significantly greater intracellular JAa levels to SKBR3 and MDA-MB-231 cells than naked JAa (0.2 μM) treatment alone. Compared to naked JAa (0.2 μM), AFt-JAa achieves enhanced growth inhibition (2.5-14-fold; <0.02 μM < GI50 < 0.15 μM) in breast cancer cells; AFt-JAa treatment results in significantly reduced clonal survival, more profound cell cycle perturbation including G2/M arrest, greater reduction in cell numbers, and increased apoptosis compared to the naked agent (p < 0.01). Decreased PLK1 and Mcl-1 expression, together with the appearance of cleaved poly (ADP-ribose)-polymerase, corroborate the augmented potency of AFt-JAa. Hence, we demonstrate that AFt represents a biocompatible vehicle for targeted delivery of JAa, offering potential to minimize toxicity and enhance JAa activity in TfR1-expressing tumors.
  11. Lim KH, Kam TS
    Org. Lett., 2006 Apr 13;8(8):1733-5.
    PMID: 16597153
    [structure: see text] A new indole alkaloid, arboflorine, possessing a novel pentacyclic carbon skeleton and incorporating a third nitrogen atom was obtained from the Malayan Kopsia arborea. The structure was established by spectroscopic analysis, and a possible biogenetic pathway from a preakuammicine-type precursor is presented.
  12. Wong SP, Gan CY, Lim KH, Ting KN, Low YY, Kam TS
    Org. Lett., 2015 Jul 17;17(14):3628-31.
    PMID: 26183592 DOI: 10.1021/acs.orglett.5b01757
    A new monoterpene indole alkaloid characterized by an unprecedented pentacyclic cage skeleton, arboridinine (1), was isolated from a Malaysian Kopsia species. The structure and absolute configuration of the alkaloid were determined based on NMR, MS, and X-ray diffraction analysis. A possible biogenetic pathway from a pericine precursor is presented.
  13. Wong SP, Chong KW, Lim KH, Lim SH, Low YY, Kam TS
    Org. Lett., 2016 Apr 1;18(7):1618-21.
    PMID: 27033525 DOI: 10.1021/acs.orglett.6b00478
    Two new monoterpene indole alkaloids, characterized by previously unencountered natural product skeletons, viz., arborisidine (1), incorporating indolizidine and cyclohexanone moieties fused to an indole unit, and arbornamine (2), incorporating an unprecedented 6/5/6/5/6 "arbornane" skeleton (distinct from the eburnan or tacaman skeleton), were isolated from a Malayan Kopsia arborea. The structures of the alkaloids were determined based on analysis of the NMR and MS data. Possible biogenetic pathways to these alkaloids from a common pericine precursor (3) are presented.
  14. Yap WS, Gan CY, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2016 Jan 22;79(1):230-9.
    PMID: 26717050 DOI: 10.1021/acs.jnatprod.5b00992
    Eleven new indole alkaloids (1-11) comprising seven aspidofractinine and four eburnane alkaloids, were isolated from the stem-bark extract of Kopsia pauciflora occurring in Malaysian Borneo. The aspidofractinine alkaloids include a ring-contracted, an additional ring-fused, a paucidactine regioisomer, two paucidactine, and one kopsine alkaloid. The structures of several of these alkaloids were also confirmed by X-ray diffraction analyses. The bisindole alkaloids isolated, norpleiomutine and kopsoffinol, showed in vitro growth inhibitory activity against human PC-3, HCT-116, MCF-7, and A549 cells and moderate effects in reversing multidrug-resistance in vincristine-resistant human KB cells.
  15. Gan CY, Low YY, Robinson WT, Komiyama K, Kam TS
    Phytochemistry, 2010 Aug;71(11-12):1365-70.
    PMID: 20542302 DOI: 10.1016/j.phytochem.2010.05.015
    Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
  16. Yang R, Zhou Z, Jiang H, Kam TS, Chen K, Ma Z
    Angew Chem Int Ed Engl, 2024 Jan 15;63(3):e202316016.
    PMID: 38038685 DOI: 10.1002/anie.202316016
    The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.
  17. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2008 Jan;71(1):53-7.
    PMID: 18078327
    Ten new indole alkaloids of the aspidofractinine type, in addition to several recently reported indole alkaloids and 20 other known alkaloids, were obtained from the leaf and stem-bark extract of the Malayan Kopsia singapurensis, viz., kopsimalines A-E (1-5), kopsinicine (6), kopsofinone (7), and kopsiloscines H-J (8-10). The structures of these alkaloids were determined using NMR and MS analysis. Kopsimalines A (1), B (2), C (3), D (4), and E (5) and kopsiloscine J (10) were found to reverse multidrug-resistance in vincristine-resistant KB cells, with 1 showing the highest potency.
  18. Subramaniam G, Hiraku O, Hayashi M, Koyano T, Komiyama K, Kam TS
    J Nat Prod, 2007 Nov;70(11):1783-9.
    PMID: 17939738
    Eleven new indole alkaloids, in addition to the previously reported rhazinal (1), and 14 other known alkaloids, were obtained from the Malayan Kopsia singapurensis, viz., kopsiloscines A-F (2-7), 16-epikopsinine (8), kopsilongine- N-oxide (9), 16-epiakuammiline (10), aspidophylline A (11), and vincophylline (12). The structures of these alkaloids were determined using NMR and MS analyses. Rhazinal (1), rhazinilam (17), and rhazinicine (18) showed appreciable cytotoxicity toward drug-sensitive as well as vincristine-resistant KB cells, while kopsiloscines A (2), B (3), and D (5) and aspidophylline A (11) were found to reverse drug-resistance in drug-resistant KB cells.
  19. Kam TS, Pang HS, Choo YM, Komiyama K
    Chem Biodivers, 2004 Apr;1(4):646-56.
    PMID: 17191876
    Six new indole alkaloids, viz., (3S)-3-cyanocoronaridine (2), (3S)-3-cyanoisovoacangine (3), conolobine A (5), conolobine B (6), conolidine (7), and (3R/3S)-3-ethoxyvoacangine (8), in addition to 36 known ones, were obtained from the stem-bark extract of the Malayan Tabernaemontana divaricata. The structures were determined by NMR and MS analysis. The CN-substituted alkaloids showed appreciable cytotoxicity towards the KB human oral epidermoid carcinoma cell-line.
  20. Lim KH, Hiraku O, Komiyama K, Koyano T, Hayashi M, Kam TS
    J Nat Prod, 2007 Aug;70(8):1302-7.
    PMID: 17665953
    Nine new indole alkaloids, rhazinoline (1), 19(S)-methoxytubotaiwine (2), 19(R)-methoxytubotaiwine (3), kopsamidine A (4), kopsamidine B (5), kopsinidine A (6), kopsinidine B (7), paucidactine C (8), and pericine N-oxide (9), in addition to several recently reported novel indoles and 34 other known ones, were obtained from the stem-bark extract of the Malayan Kopsia arborea. The structures were determined using NMR and MS analysis. Valparicine (12) showed pronounced cytotoxic effects against KB and Jurkat cells (IC(50) 13.0 and 0.91 microM, respectively).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links