Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Abu Kassim NL, Mohd Bakri SK, Nusrat F, Salim E, Manjurul Karim M, Rahman MT
    Account Res, 2024 Dec;31(1):56-71.
    PMID: 35758245 DOI: 10.1080/08989621.2022.2094256
    Considering the fact that publications serve as an important criterion to evaluate the scientific accomplishments of an individual within respective fields in academia, there has been an increasing trend to publish scientific articles whereby multiple authors are defined as primary, co-, or corresponding authors according to the roles performed. This article analyzes the authorship pattern in 4,561 papers (including 60 single-authored papers) from 1990 till 2020 of 94 academics who hold a position as professors and are affiliated with the Faculty of Medicine at three different research universities in Malaysia. Only 708 papers (15.5% of 4,561 papers) were authored by less than three authors. In 3,080 papers (67.5% of 4,561 papers), those academics appeared as coauthors. Using different years as cutoff periods, it was observed that the appearance as coauthor in the papers had steeply risen around the years: 2006, 2007, 2008 and onwards. The increased number of authors in the multi-author papers and the appearance of the selected academics as coauthors reflect the extent of boosting of collaborative research in that period which corresponds to the adoption of the "publish or perish policy" by the Ministry of Higher Education in Malaysia.
  2. Siddiqui R, Ali IK, Cope JR, Khan NA
    Acta Trop, 2016 Dec;164:375-394.
    PMID: 27616699 DOI: 10.1016/j.actatropica.2016.09.009
    Naegleria fowleri is a protist pathogen that can cause lethal brain infection. Despite decades of research, the mortality rate related with primary amoebic meningoencephalitis owing to N. fowleri remains more than 90%. The amoebae pass through the nose to enter the central nervous system killing the host within days, making it one of the deadliest opportunistic parasites. Accordingly, we present an up to date review of the biology and pathogenesis of N. fowleri and discuss needs for future research against this fatal infection.
  3. Samat NA, Yusoff FM, Rasdi NW, Karim M
    Animals (Basel), 2020 Dec 21;10(12).
    PMID: 33371528 DOI: 10.3390/ani10122457
    At the present time, no artificial larval diet is capable of entirely fulfilling the dietary requirements of several larval fish and crustacean species. Zooplankton live food is the basic foundation of fish larviculture, and successful rearing of fish larvae still heavily depends on an adequate supply of nutritious live food. Despite being important, the production protocols of copepods and cladocerans (Moina) are still underdeveloped in hatcheries. Rotifers and Artemia are the most commonly used live foods. However, these live foods are evidently lacking in crucial nutrient constituents. Hence, through nutrient enrichment, live food with the nutritional profile that meets the requirements of fish larvae can be produced. With the aim to maximize the effectiveness of production to optimize profitability, it is important to evaluate and improve culture techniques for the delivery of micro- and macro-nutrients as feed supplements to larvae in aquaculture systems. Bioencapsulation and enrichment are the evolving techniques in aquaculture that are commonly employed to enhance the nutritional quality of live food by integrating nutrients into them, which subsequently improves the growth, survival, and disease resistance of the consuming hosts. This review aims to highlight some of the approaches and methods used to improve the nutritional quality of live food by modifying their nutrient composition, which could have immense promise in the enhancement of aquatic animal health.
  4. Samat NA, Yusoff FM, Rasdi NW, Karim M
    Antibiotics (Basel), 2021 Aug 16;10(8).
    PMID: 34439039 DOI: 10.3390/antibiotics10080989
    The administration of probiotics via live feeds, such as Artemia and rotifers, has gained significant attention. Moreover, indiscriminate use of antibiotics in conventional aquaculture practices in order to prevent or control disease outbreaks has resulted in the occurrence of residues and antimicrobial resistance. Thus, the application of eco-friendly feed additives, such as probiotics, as a safer alternative has received increasing attention in recent years. However, only minimal information on the administration of probiotics via freshwater cladoceran Moina micrura is available despite being commonly used for larval and post-larval feeding of freshwater crustaceans and fish. Thus, this study aimed to evaluate the application of Bacillus pocheonensis strain S2 administered via M. micrura to red hybrid tilapia (Oreochromis spp.) larvae. Bacillus pocheonensis that has been previously isolated from Spirulina sp. was subjected to preliminary in vitro evaluation of antagonistic properties. The agar well-diffusion assay revealed that this probiont could inhibit the growth of Streptococcus agalactiae and Aeromonas hydrophila. The size of inhibition zones ranged from 8.8 ± 0.2 to 18.2 ± 0.4 mm. Moina micrura was later used as a biological model in preliminary in vivo bacterial challenge assays to evaluate the efficacy of B. pocheonensis in protecting the host from diseases. Moina micrura was pre-enriched with B. pocheonensis at 104 and 106 CFU mL-1 before S. agalactiae and A. hydrophila were introduced into the culture. The study revealed that B. pocheonensis at 104 CFU mL-1 was able to significantly enhance the survival of M. micrura after being challenged with both pathogens (63 ± 3%) in comparison to the control group. The relative percentage survival (RPS) of M. micrura was highest (p < 0.05) when treated with B. pocheonensis at both concentrations 104 and 106 CFU mL-1 (38.33) after being challenged against S. agalactiae. To assess the efficacy of B. pocheonensis in protecting red hybrid tilapia against streptococcosis, the larvae were fed with either unenriched (control) Moina or probiont-enriched Moina daily for 10 days. A significantly (p < 0.05) higher survival rate (77 ± 3%) was observed in larvae fed with probiont-enriched M. micrura compared to other treatments, and the RPS was recorded at 62.90. In addition, the S. agalactiae load was suppressed in larvae fed probiont-enriched M. micrura (6.84±0.39 CFU mL-1) in comparison to the control group (7.78±0.09 CFU mL-1), indicating that the probiont might have contributed to the improvement of tilapia health and survival. This study illustrated that M. micrura was suitable to be used as a vector for probiotics in freshwater fish larvae as an alternative to hazardous antibiotics for disease control.
  5. Rafiqul IS, Sakinah AM, Karim MR
    Appl Biochem Biotechnol, 2014 Sep;174(2):542-55.
    PMID: 25082763 DOI: 10.1007/s12010-014-1059-z
    Xylitol production by bioconversion of xylose can be economically interesting if the raw material can be recovered from a cheap lignocellulosic biomass (LCB). Meranti wood sawdust (MWS) is a renewable and low-cost LCB that can be used as a promising and economic source of xylose, a starting raw material for the manufacture of several specialty chemicals, especially xylitol. This study aimed to optimize the hydrolysis process of MWS and to determine the influence of temperature, H2SO4 concentration, and residence time on xylose release and on by-product formation (glucose, arabinose, acetic acid, furfural, hydroxymethylfurfural (HMF), and lignin degradation products (LDPs)). Batch hydrolysis was conducted under various operating conditions, and response surface methodology was adopted to achieve the highest xylose yield. Xylose production was highly affected by temperature, acid concentration, and residence time. The optimum temperature, acid concentration, and time were determined to be 124 °C, 3.26 %, and 80 min, respectively. Under these optimum conditions, xylose yield and selectivity were attained at 90.6 % and 4.05 g/g, respectively.
  6. Shukor MY, Rahman MF, Shamaan NA, Lee CH, Karim MI, Syed MA
    Appl Biochem Biotechnol, 2008 Mar;144(3):293-300.
    PMID: 18556818
    Molybdenum-reducing activity in the heterotrophic bacteria is a phenomenon that has been reported for more than 100 years. In the presence of molybdenum in the growth media, bacterial colonies turn to blue. The enzyme(s) responsible for the reduction of molybdenum to molybdenum blue in these bacteria has never been purified. In our quest to purify the molybdenum-reducing enzyme, we have devised a better substrate for the enzyme activity using laboratory-prepared phosphomolybdate instead of the commercial 12-phosphomolybdate we developed previously. Using laboratory-prepared phosphomolybdate, the highest activity is given by 10:4-phosphomolybdate. The apparent Michaelis constant, Km for the laboratory-prepared 10:4-phosphomolybdate is 2.56 +/- 0.25 mM (arbitrary concentration), whereas the apparent V(max) is 99.4 +/- 2.85 nmol Mo-blue min(-1) mg(-1) protein. The apparent Michaelis constant or Km for NADH as the electron donor is 1.38 +/- 0.09 mM, whereas the apparent V(max) is 102.6 +/- 1.73 nmol Mo-blue min(-1) mg(-l) protein. The apparent Km and V(max) for another electron donor, NADPH, is 1.43 +/- 0.10 mM and 57.16 +/- 1.01 nmol Mo-blue min(-1) mg(-1) protein, respectively, using the same batch of molybdenum-reducing enzyme. The apparent V(max) obtained for NADH and 10:4-phosphomolybdate is approximately 13 times better than 12-phoshomolybdate using the same batch of enzyme, and hence, the laboratory-prepared phosphomolybdate is a much better substrate than 12-phoshomolybdate. In addition, 10:4-phosphomolybdate can be routinely prepared from phosphate and molybdate, two common chemicals in the laboratory.
  7. Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):73-9.
    PMID: 15304740
    The oil palm sector is one of the major plantation industries in Malaysia. Palm kernel cake is a byproduct of extracted palm kernel oil. Mostly palm kernel cake is wasted or is mixed with other nutrients and used as animal feed, especially for ruminant animals. Recently, palm kernel cake has been identified as an important ingredient for the formulation of animal feed, and it is also exported especially to Europe, South Korea, and Japan. It can barely be consumed by nonruminant (monogastric) animals owing to the high percentages of hemicellulose and cellulose contents. Palm kernel cake must undergo suitable pretreatment in order to decrease the percentage of hemicellulose and cellulose. One of the methods employed in this study is fermentation with microorganisms, particularly fungi, to partially degrade the hemicellulose and cellulose content. This work focused on the production of enzymes by Aspergillus niger and profiling using palm kernel cake as carbon source.
  8. Loh CW, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595448
    This study involves the production of short-chain organic acids from kitchen wastes as intermediates for the production of biodegradable plastics. Flasks, without mixing were used for the anaerobic conversion of the organic fraction of kitchen wastes into short-chain organic acids. The influence of pH, temperature and addition of sludge cake on the rate of organic acids production and yield were evaluated. Fermentations were carried out in an incubator at different temperatures controlled at 30 degrees C. 40 degrees C, 50 degrees C, 60 degrees C and uncontrolled at room temperature. The pH was also varied at pH 5, 6, 7, and uncontrolled pH. 1.0 M phosphate buffer was used for pH control, and 1.0 M HCl and 1.0 M NaOH were added when necessary. Sludge cake addition enhanced the rate of maximum acids production from 4 days to 1 day. The organic acids produced were maximum at pH 7 and 50 degrees C i.e., 39.84 g/l on the fourth day of fermentation with a yield of 0.87 g/g soluble COD consumed, and 0.84 g/g TVS. The main organic acid produced was lactic acid (65-85%), with small amounts of acetic (10-30%), propionic (5-10%), and butyric (5-20%) acids. The results of this study showed that kitchen wastes could be fermented to high concentration of organic acids, which could be used as substrates for the production of biodegradable plastics.
  9. Tang SN, Fakhru'l-Razi A, Hassan MA, Karim MI
    PMID: 10595441
    Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
  10. Zhao W, Dao C, Karim M, Gomez-Chiarri M, Rowley D, Nelson DR
    BMC Microbiol, 2016 Jan 05;16:1.
    PMID: 26728027 DOI: 10.1186/s12866-015-0617-z
    The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm.
  11. Puvanasundram P, Chong CM, Sabri S, Yusoff MSM, Lim KC, Karim M
    Biology (Basel), 2022 Nov 10;11(11).
    PMID: 36358345 DOI: 10.3390/biology11111644
    Compatibility of each strain in a multi-strain probiotic (MSP), along with its properties, becomes a strong base for its formulation. In this study, single-strain probiotics (SSPs) and multi-strain probiotics (MSPs) were evaluated in vitro for strain compatibility, microbial antagonism, biofilm formation capacity, and stress tolerance. Bacillus amyloliquefaciens L11, Enterococcus hirae LAB3, and Lysinibacillus fusiformis SPS11 were chosen as MSP1 candidates because they showed much stronger antagonism to Aeromonas hydrophila and Streptococcus agalactiae than a single probiotic. MSP 2 candidates were Lysinibacillus fusiformis strains SPS11, A1, and Lysinibacillus sphaericus strain NAS32 because the inhibition zone produced by MSP 2 against Vibrio harveyi and Vibrio parahaemolyticus was much higher than that produced by its constituent SSPs. MSP1 in the co-culture assay reduced (p < 0.05) A. hydrophila count from 9.89 ± 0.1 CFU mL−1 to 2.14 ± 0.2 CFU mL−1. The biofilm formation of both MSPs were significantly higher (p < 0.05) than its constituent SSPs and the pathogens. The SSPs in both MSPs generally showed resistance to high temperatures (80, 90, and 100 °C) and a wide range of pH (2 to 9). This in vitro assessment study demonstrates that MSP1 and 2 have the potential to be further explored as multi-strain probiotics on selected aquatic species.
  12. Jasmin MY, Isa NM, Kamarudin MS, Lim KC, Karim M
    Braz J Microbiol, 2024 Jan 27.
    PMID: 38280093 DOI: 10.1007/s42770-024-01246-9
    The accumulation of nitrogen compounds in shrimp farming water and effluent presents a major challenge. Ammonia is a form of nitrogen that limits shrimp growth due to its potential toxicity and effects on shrimp health and water quality. This study is aimed at identifying promising bioremediators from shrimp pond sludge to mitigate ammonia levels in both culture water and wastewater and at determining major bacterial communities in sludge using metagenomic analysis. A sludge sample was collected from a shrimp pond in Selangor, Malaysia, to isolate potential ammonia-removing bacteria. Out of 64 isolated strains, Bacillus flexus SS2 showed the highest growth in synthetic basal media (SBM) containing ammonium sulfate at a concentration of 70 mg/L as the sole nitrogen source. The strain was then incubated in SBM with varying pH levels and showed optimal growth at pH 6.5-7. After 24 h of incubation, B. flexus SS2 reduced the ammonia concentration from an initial concentration of 5 to 0.01 mg/L, indicating a 99.61% reduction rate, which was highest in SBM at pH 7. Moreover, the strain showed ammonia removal ability at concentrations ranging from 5 to 70 mg/L. Metagenomic analysis revealed that Proteobacteria was the most abundant phylum in the sludge, followed by Cyanobacteria, Actinobacteria, Chloraflexi, Firmicutes, and Campilobacterota. Bacillus flexus SS2 belongs to the Bacillota phylum and has the potential to serve as a bioremediator for removing ammonia from shrimp culture water and wastewater.
  13. Masduki F, Y JM, Min CC, Karim M
    Curr Microbiol, 2020 Dec;77(12):3962-3968.
    PMID: 33025182 DOI: 10.1007/s00284-020-02228-4
    In this study, we aimed to isolate, identify and characterize lactic acid bacteria (LAB) from the intestine of juvenile seabass (Lates calcarifer) as a new potential probiotic. Four strains of LABs were isolated from the intestines of ten healthy seabass juveniles. In the in vitro screening process using spot lawn assay, one isolate labeled as LAB3 showed inhibitory activity against Vibrio harveyi (ATCC 35,084). Strain LAB3 was determined to belong to the gram positive bacteria group with cocci shape and was identified as Enterococcus hirae using 16S rDNA analysis. This bacterium was able to grow at pH ranging from pH 2 to 10 with the best growth at pH 7. This strain was also able to grow at 0-4% NaCl after 24 h incubation and grew best at 1.5% NaCl. Enterococcus hirae strain LAB3 of the present study is worthy to be further characterized as a potential probiotic for use in seabass culture.
  14. Rosland NA, Ikhsan N, Min CC, Yusoff FM, Karim M
    Curr Microbiol, 2021 Nov;78(11):3901-3912.
    PMID: 34522979 DOI: 10.1007/s00284-021-02642-2
    The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae-bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.
  15. Ariff AB, Rosfarizan M, Sobri MA, Karim MI
    Environ Technol, 2001 Jun;22(6):697-704.
    PMID: 11482390
    Research was undertaken to investigate the treatment of fishery washing water using Bacillus sphaericus, and to recover the spores for subsequent use as bioinsecticide to control the population of mosquitoes. This treatment method could reduce pollution due to organic matter by decreasing the value of Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) by about 85% and 92%, respectively. The maximum concentration of spores (83.3 x 10(7) spores ml(-1)) using normal concentration of filtered fishery washing water was only about 27% lower than that obtained in fermentation using 0.25% (w/v) yeast extract. The larvicidal activity of the spores produced in fermentation using fishery washing water to Culex quinquefaciatus, as measured by LD50 after 48 h, was almost the same as the larvicidal activity of spores obtained from fermentation using yeast extract.
  16. Kareem ZH, Abdelhadi YM, Christianus A, Karim M, Romano N
    Fish Physiol Biochem, 2016 Apr;42(2):757-69.
    PMID: 26643907 DOI: 10.1007/s10695-015-0173-3
    A 90-day feeding trial was conducted on the growth performance, feeding efficacy, body indices, various hematological and plasma biochemical parameters, and histopathological examination of the gonads from male and female Nile tilapia fingerlings when fed different crude plant extracts from Cinnamomum camphora, Euphorbia hirta, Azadirachta indica, or Carica papaya at 2 g kg(-1) compared to a control diet. This was followed by a 14-day challenge to Streptococcus agalactiae. All treatments were triplicated, and each treatment consisted of 30 fish. Results showed that C. papaya extracts were the most effective at delaying gonadal maturation to both male and female tilapia, as well as significantly increasing (P < 0.05) growth performance compared to the control treatment. Similarly, dietary C. camphora and E. hirta extracts also significantly improved growth, while no significant growth effect was detected between the A. indica and control treatments (P > 0.05). Further, crude body lipid was lower in the C. camphora, E. hirta and C. papaya treatments, but was only significantly lower for the E. hirta treatment compared to the control. Meanwhile, none of the hematological or biochemical parameters were significantly affected, although plasma ALT was significantly lower for tilapia fed A. indica compared to the control. After the 14-day bacterial challenge, tilapia fed C. camphora supplementation had significantly higher survival, compared to the control, but was not significantly higher than the other supplemented diets. Results indicate that dietary C. papaya extract can significantly promote growth and delay gonadal maturation to both male and female tilapia, while C. camphora was the most effective prophylactic to S. agalactiae and may be a cost-effective and eco-friendly alternative to antibiotics.
  17. Rosfarizan M, Ariff AB, Hassan MA, Karim MI
    Folia Microbiol (Praha), 1998;43(5):459-64.
    PMID: 9867479
    Direct conversion of gelatinized sago starch into kojic acid by Aspergillus flavus strain having amylolytic enzymes was carried out at two different scales of submerged batch fermentation in a 250-mL shake flask and in a 50-L stirred-tank fermentor. For comparison, fermentations were also carried out using glucose and glucose hydrolyzate from enzymic hydrolysis of sago starch as carbon sources. During kojic acid fermentation of starch, starch was first hydrolyzed to glucose by the action of alpha-amylase and glucoamylase during active growth phase. The glucose remaining during the production phase (non-growing phase) was then converted to kojic acid. Kojic acid production (23.5 g/L) using 100 g/L sago starch in a shake flask was comparable to fermentation of glucose (31.5 g/L) and glucose hydrolyzate (27.9 g/L) but in the 50-L fermentor was greatly reduced due to non-optimal aeration conditions. Kojic acid production using glucose was higher in the 50-L fermentor than in the shake flask.
  18. Madihah MS, Ariff AB, Khalil MS, Suraini AA, Karim MI
    Folia Microbiol (Praha), 2001;46(3):197-204.
    PMID: 11702403
    A study of the kinetics and performance of solvent-yielding batch fermentation of individual sugars and their mixture derived from enzymic hydrolysis of sago starch by Clostridium acetobutylicum showed that the use of 30 g/L gelatinized sago starch as the sole carbon source produced 11.2 g/L total solvent, i.e. 1.5-2 times more than with pure maltose or glucose used as carbon sources. Enzymic pretreatment of gelatinized sago starch yielding maltose and glucose hydrolyzates prior to the fermentation did not improve solvent production as compared to direct fermentation of gelatinized sago starch. The solvent yield of direct gelatinized sago starch fermentation depended on the activity and stability of amylolytic enzymes produced during the fermentation. The pH optima for alpha-amylase and glucoamylase were found to be at 5.3 and 4.0-4.4, respectively. alpha-Amylase showed a broad pH stability profile, retaining more than 80% of its maximum activity at pH 3.0-8.0 after a 1-d incubation at 37 degrees C. Since C. acetobutylicum alpha-amylase has a high activity and stability at low pH, this strain can potentially be employed in a one-step direct solvent-yielding fermentation of sago starch. However, the C. acetobutylicum glucoamylase was only stable at pH 4-5, maintaining more than 90% of its maximum activity after a 1-d incubation at 37 degrees C.
  19. Thorne-Lyman AL, Valpiani N, Akter R, Baten MA, Genschick S, Karim M, et al.
    Food Nutr Bull, 2017 Sep;38(3):354-368.
    PMID: 28618837 DOI: 10.1177/0379572117709417
    BACKGROUND: Fish is a widely available animal-source food in Bangladesh and a rich source of nutrients, yet little is known about practices related to incorporating fish into the diets of infants and young children.

    OBJECTIVE: Use dietary diversity data to explore consumption patterns of fish and high-quality food items within the household and examine factors associated with delayed introduction of fish to infants and young children.

    METHODS: Cross-sectional survey of 496 households with children <36 months participating in the Aquaculture for Income and Nutrition project in Bangladesh. Data collected included household characteristics, women's dietary diversity score, and minimum dietary diversity score along with data on Infant and Young Child Feeding practices.

    RESULTS: Most children (63.4%) met the threshold for minimum dietary diversity. Despite having received extensive nutrition education related to including fish in complementary foods, only half of the caretakers introduced fish at 6 months and the mean age of introduction of small fish was 8.7 months. Meat and fish were not common in infant diets but increased with child age. Concerns about bones were a major barrier to incorporating fish into infant diets.

    CONCLUSION: Given its nutrient profile and widespread availability in certain contexts, fish could be an underutilized opportunity to improve nutrition and health outcomes of infants and young children. Further research, including utilizing food processing technologies, is needed to develop appropriate responses to overcome these barriers.

  20. Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, et al.
    Hepatol Int, 2019 11;13(6):826-828.
    PMID: 31595462 DOI: 10.1007/s12072-019-09980-1
    The article Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific association for the study of the liver (APASL): an update, written by [Shiv Sarin], was originally published electronically on the publisher's internet portal (currently SpringerLink) on June 06, 2019 without open access.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links