Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

  2. Bhoo-Pathy N, Peeters PH, Uiterwaal CS, Bueno-de-Mesquita HB, Bulgiba AM, Bech BH, et al.
    Breast Cancer Res, 2015 Jan 31;17:15.
    PMID: 25637171 DOI: 10.1186/s13058-015-0521-3
    INTRODUCTION: Specific coffee subtypes and tea may impact risk of pre- and post-menopausal breast cancer differently. We investigated the association between coffee (total, caffeinated, decaffeinated) and tea intake and risk of breast cancer.

    METHODS: A total of 335,060 women participating in the European Prospective Investigation into Nutrition and Cancer (EPIC) Study, completed a dietary questionnaire from 1992 to 2000, and were followed-up until 2010 for incidence of breast cancer. Hazard ratios (HR) of breast cancer by country-specific, as well as cohort-wide categories of beverage intake were estimated.

    RESULTS: During an average follow-up of 11 years, 1064 premenopausal, and 9134 postmenopausal breast cancers were diagnosed. Caffeinated coffee intake was associated with lower risk of postmenopausal breast cancer: adjusted HR=0.90, 95% confidence interval (CI): 0.82 to 0.98, for high versus low consumption; Ptrend=0.029. While there was no significant effect modification by hormone receptor status (P=0.711), linear trend for lower risk of breast cancer with increasing caffeinated coffee intake was clearest for estrogen and progesterone receptor negative (ER-PR-), postmenopausal breast cancer (P=0.008). For every 100 ml increase in caffeinated coffee intake, the risk of ER-PR- breast cancer was lower by 4% (adjusted HR: 0.96, 95% CI: 0.93 to 1.00). Non-consumers of decaffeinated coffee had lower risk of postmenopausal breast cancer (adjusted HR=0.89; 95% CI: 0.80 to 0.99) compared to low consumers, without evidence of dose-response relationship (Ptrend=0.128). Exclusive decaffeinated coffee consumption was not related to postmenopausal breast cancer risk, compared to any decaffeinated-low caffeinated intake (adjusted HR=0.97; 95% CI: 0.82 to 1.14), or to no intake of any coffee (HR: 0.96; 95%: 0.82 to 1.14). Caffeinated and decaffeinated coffee were not associated with premenopausal breast cancer. Tea intake was neither associated with pre- nor post-menopausal breast cancer.

    CONCLUSIONS: Higher caffeinated coffee intake may be associated with lower risk of postmenopausal breast cancer. Decaffeinated coffee intake does not seem to be associated with breast cancer.

  3. Emaus MJ, Peeters PH, Bakker MF, Overvad K, Tjønneland A, Olsen A, et al.
    Am J Clin Nutr, 2016 Jan;103(1):168-77.
    PMID: 26607934 DOI: 10.3945/ajcn.114.101436
    BACKGROUND: The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk.

    OBJECTIVE: This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk.

    DESIGN: A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors.

    RESULTS: After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk.

    CONCLUSION: This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk.

  4. Markt SC, Shui IM, Unger RH, Urun Y, Berg CD, Black A, et al.
    Prostate, 2015 Nov;75(15):1677-81.
    PMID: 26268879 DOI: 10.1002/pros.23035
    BACKGROUND: ABO blood group has been associated with risk of cancers of the pancreas, stomach, ovary, kidney, and skin, but has not been evaluated in relation to risk of aggressive prostate cancer.

    METHODS: We used three single nucleotide polymorphisms (SNPs) (rs8176746, rs505922, and rs8176704) to determine ABO genotype in 2,774 aggressive prostate cancer cases and 4,443 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). Unconditional logistic regression was used to calculate age and study-adjusted odds ratios and 95% confidence intervals for the association between blood type, genotype, and risk of aggressive prostate cancer (Gleason score ≥8 or locally advanced/metastatic disease (stage T3/T4/N1/M1).

    RESULTS: We found no association between ABO blood type and risk of aggressive prostate cancer (Type A: OR = 0.97, 95%CI = 0.87-1.08; Type B: OR = 0.92, 95%CI =n0.77-1.09; Type AB: OR = 1.25, 95%CI = 0.98-1.59, compared to Type O, respectively). Similarly, there was no association between "dose" of A or B alleles and aggressive prostate cancer risk.

    CONCLUSIONS: ABO blood type was not associated with risk of aggressive prostate cancer.

  5. Szulkin R, Karlsson R, Whitington T, Aly M, Gronberg H, Eeles RA, et al.
    Cancer Epidemiol Biomarkers Prev, 2015 Nov;24(11):1796-800.
    PMID: 26307654 DOI: 10.1158/1055-9965.EPI-15-0543
    BACKGROUND: Unnecessary intervention and overtreatment of indolent disease are common challenges in clinical management of prostate cancer. Improved tools to distinguish lethal from indolent disease are critical.

    METHODS: We performed a genome-wide survival analysis of cause-specific death in 24,023 prostate cancer patients (3,513 disease-specific deaths) from the PRACTICAL and BPC3 consortia. Top findings were assessed for replication in a Norwegian cohort (CONOR).

    RESULTS: We observed no significant association between genetic variants and prostate cancer survival.

    CONCLUSIONS: Common genetic variants with large impact on prostate cancer survival were not observed in this study.

    IMPACT: Future studies should be designed for identification of rare variants with large effect sizes or common variants with small effect sizes.

  6. Nagel G, Stafoggia M, Pedersen M, Andersen ZJ, Galassi C, Munkenast J, et al.
    Int J Cancer, 2018 10 01;143(7):1632-1643.
    PMID: 29696642 DOI: 10.1002/ijc.31564
    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM10 ), below 2.5 µm (PM2.5 ), between 2.5 and 10 µm (PMcoarse ), PM2.5 absorbance and nitrogen oxides (NO2 and NOX ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305,551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m3 of PM2.5 was 1.38 (95% CI 0.99; 1.92) for gastric and 1.05 (95% CI 0.62; 1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM2.5 was found in men (HR 1.98 [1.30; 3.01]) as compared to women (HR 0.85 [0.5; 1.45]). This large multicentre cohort study shows an association between long-term exposure to PM2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk.
  7. Panagiotou OA, Travis RC, Campa D, Berndt SI, Lindstrom S, Kraft P, et al.
    Eur Urol, 2015 Apr;67(4):649-57.
    PMID: 25277271 DOI: 10.1016/j.eururo.2014.09.020
    BACKGROUND: No single-nucleotide polymorphisms (SNPs) specific for aggressive prostate cancer have been identified in genome-wide association studies (GWAS).

    OBJECTIVE: To test if SNPs associated with other traits may also affect the risk of aggressive prostate cancer.

    DESIGN, SETTING, AND PARTICIPANTS: SNPs implicated in any phenotype other than prostate cancer (p≤10(-7)) were identified through the catalog of published GWAS and tested in 2891 aggressive prostate cancer cases and 4592 controls from the Breast and Prostate Cancer Cohort Consortium (BPC3). The 40 most significant SNPs were followed up in 4872 aggressive prostate cancer cases and 24,534 controls from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (PRACTICAL) consortium.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) and 95% confidence intervals (CIs) for aggressive prostate cancer were estimated.

    RESULTS AND LIMITATIONS: A total of 4666 SNPs were evaluated by the BPC3. Two signals were seen in regions already reported for prostate cancer risk. rs7014346 at 8q24.21 was marginally associated with aggressive prostate cancer in the BPC3 trial (p=1.6×10(-6)), whereas after meta-analysis by PRACTICAL the summary OR was 1.21 (95% CI 1.16-1.27; p=3.22×10(-18)). rs9900242 at 17q24.3 was also marginally associated with aggressive disease in the meta-analysis (OR 0.90, 95% CI 0.86-0.94; p=2.5×10(-6)). Neither of these SNPs remained statistically significant when conditioning on correlated known prostate cancer SNPs. The meta-analysis by BPC3 and PRACTICAL identified a third promising signal, marked by rs16844874 at 2q34, independent of known prostate cancer loci (OR 1.12, 95% CI 1.06-1.19; p=4.67×10(-5)); it has been shown that SNPs correlated with this signal affect glycine concentrations. The main limitation is the heterogeneity in the definition of aggressive prostate cancer between BPC3 and PRACTICAL.

    CONCLUSIONS: We did not identify new SNPs for aggressive prostate cancer. However, rs16844874 may provide preliminary genetic evidence on the role of the glycine pathway in prostate cancer etiology.

    PATIENT SUMMARY: We evaluated whether genetic variants associated with several traits are linked to the risk of aggressive prostate cancer. No new such variants were identified.

  8. Sen A, Papadimitriou N, Lagiou P, Perez-Cornago A, Travis RC, Key TJ, et al.
    Int J Cancer, 2019 Jan 15;144(2):240-250.
    PMID: 29943826 DOI: 10.1002/ijc.31634
    The epidemiological evidence regarding the association of coffee and tea consumption with prostate cancer risk is inconclusive, and few cohort studies have assessed these associations by disease stage and grade. We examined the associations of coffee (total, caffeinated and decaffeinated) and tea intake with prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition. Among 142,196 men, 7,036 incident prostate cancer cases were diagnosed over 14 years of follow-up. Data on coffee and tea consumption were collected through validated country-specific food questionnaires at baseline. We used Cox proportional hazards regression models to compute hazard ratios (HRs) and 95% confidence intervals (CI). Models were stratified by center and age, and adjusted for anthropometric, lifestyle and dietary factors. Median coffee and tea intake were 375 and 106 mL/day, respectively, but large variations existed by country. Comparing the highest (median of 855 mL/day) versus lowest (median of 103 mL/day) consumers of coffee and tea (450 vs. 12 mL/day) the HRs were 1.02 (95% CI, 0.94-1.09) and 0.98 (95% CI, 0.90-1.07) for risk of total prostate cancer and 0.97 (95% CI, 0.79-1.21) and 0.89 (95% CI, 0.70-1.13) for risk of fatal disease, respectively. No evidence of association was seen for consumption of total, caffeinated or decaffeinated coffee or tea and risk of total prostate cancer or cancer by stage, grade or fatality in this large cohort. Further investigations are needed to clarify whether an association exists by different preparations or by concentrations and constituents of these beverages.
  9. Dimitrakopoulou VI, Travis RC, Shui IM, Mondul A, Albanes D, Virtamo J, et al.
    Am J Epidemiol, 2017 Mar 15;185(6):452-464.
    PMID: 28399564 DOI: 10.1093/aje/kww143
    Genome-wide association studies (GWAS) have identified over 100 single nucleotide polymorphisms (SNPs) associated with prostate cancer. However, information on the mechanistic basis for some associations is limited. Recent research has been directed towards the potential association of vitamin D concentrations and prostate cancer, but little is known about whether the aforementioned genetic associations are modified by vitamin D. We investigated the associations of 46 GWAS-identified SNPs, circulating concentrations of 25-hydroxyvitamin D (25(OH)D), and prostate cancer (3,811 cases, 511 of whom died from the disease, compared with 2,980 controls-from 5 cohort studies that recruited participants over several periods beginning in the 1980s). We used logistic regression models with data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3) to evaluate interactions on the multiplicative and additive scales. After allowing for multiple testing, none of the SNPs examined was significantly associated with 25(OH)D concentration, and the SNP-prostate cancer associations did not differ by these concentrations. A statistically significant interaction was observed for each of 2 SNPs in the 8q24 region (rs620861 and rs16902094), 25(OH)D concentration, and fatal prostate cancer on both multiplicative and additive scales (P ≤ 0.001). We did not find strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of 25(OH)D. The intriguing interactions between rs620861 and rs16902094, 25(OH)D concentration, and fatal prostate cancer warrant replication.
  10. Papadimitriou N, Muller D, van den Brandt PA, Geybels M, Patel CJ, Gunter MJ, et al.
    Eur J Nutr, 2020 Oct;59(7):2929-2937.
    PMID: 31705265 DOI: 10.1007/s00394-019-02132-z
    PURPOSE: The evidence from the literature regarding the association of dietary factors and risk of prostate cancer is inconclusive.

    METHODS: A nutrient-wide association study was conducted to systematically and comprehensively evaluate the associations between 92 foods or nutrients and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cox proportional hazard regression models adjusted for total energy intake, smoking status, body mass index, physical activity, diabetes and education were used to estimate hazard ratios and 95% confidence intervals for standardized dietary intakes. As in genome-wide association studies, correction for multiple comparisons was applied using the false discovery rate (FDR 

  11. Bamia C, Lagiou P, Jenab M, Aleksandrova K, Fedirko V, Trichopoulos D, et al.
    Br. J. Cancer, 2015 Mar 31;112(7):1273-82.
    PMID: 25742480 DOI: 10.1038/bjc.2014.654
    BACKGROUND: Vegetable and/or fruit intakes in association with hepatocellular carcinoma (HCC) risk have been investigated in case-control studies conducted in specific European countries and cohort studies conducted in Asia, with inconclusive results. No multi-centre European cohort has investigated the indicated associations.

    METHODS: In 486,799 men/women from the European Prospective Investigation into Cancer and nutrition, we identified 201 HCC cases after 11 years median follow-up. We calculated adjusted hazard ratios (HRs) for HCC incidence for sex-specific quintiles and per 100 g d(-1) increments of vegetable/fruit intakes.

    RESULTS: Higher vegetable intake was associated with a statistically significant, monotonic reduction of HCC risk: HR (100 g d(-1) increment): 0.83; 95% CI: 0.71-0.98. This association was consistent in sensitivity analyses with no apparent heterogeneity across strata of HCC risk factors. Fruit intake was not associated with HCC incidence: HR (100 g d(-1) increment): 1.01; 95% CI: 0.92-1.11.

    CONCLUSIONS: Vegetable, but not fruit, intake is associated with lower HCC risk with no evidence for heterogeneity of this association in strata of important HCC risk factors. Mechanistic studies should clarify pathways underlying this association. Given that HCC prognosis is poor and that vegetables are practically universally accessible, our results may be important, especially for those at high risk for the disease.
  12. Watts EL, Appleby PN, Perez-Cornago A, Bueno-de-Mesquita HB, Chan JM, Chen C, et al.
    Eur Urol, 2018 Nov;74(5):585-594.
    PMID: 30077399 DOI: 10.1016/j.eururo.2018.07.024
    BACKGROUND: Experimental and clinical evidence implicates testosterone in the aetiology of prostate cancer. Variation across the normal range of circulating free testosterone concentrations may not lead to changes in prostate biology, unless circulating concentrations are low. This may also apply to prostate cancer risk, but this has not been investigated in an epidemiological setting.

    OBJECTIVE: To examine whether men with low concentrations of circulating free testosterone have a reduced risk of prostate cancer.

    DESIGN, SETTING, AND PARTICIPANTS: Analysis of individual participant data from 20 prospective studies including 6933 prostate cancer cases, diagnosed on average 6.8 yr after blood collection, and 12 088 controls in the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group.

    OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) of incident overall prostate cancer and subtypes by stage and grade, using conditional logistic regression, based on study-specific tenths of calculated free testosterone concentration.

    RESULTS AND LIMITATIONS: Men in the lowest tenth of free testosterone concentration had a lower risk of overall prostate cancer (OR=0.77, 95% confidence interval [CI] 0.69-0.86; p<0.001) compared with men with higher concentrations (2nd-10th tenths of the distribution). Heterogeneity was present by tumour grade (phet=0.01), with a lower risk of low-grade disease (OR=0.76, 95% CI 0.67-0.88) and a nonsignificantly higher risk of high-grade disease (OR=1.56, 95% CI 0.95-2.57). There was no evidence of heterogeneity by tumour stage. The observational design is a limitation.

    CONCLUSIONS: Men with low circulating free testosterone may have a lower risk of overall prostate cancer; this may be due to a direct biological effect, or detection bias. Further research is needed to explore the apparent differential association by tumour grade.

    PATIENT SUMMARY: In this study, we looked at circulating testosterone levels and risk of developing prostate cancer, finding that men with low testosterone had a lower risk of prostate cancer.

  13. Perez-Cornago A, Appleby PN, Pischon T, Tsilidis KK, Tjønneland A, Olsen A, et al.
    BMC Med, 2017 07 13;15(1):115.
    PMID: 28701188 DOI: 10.1186/s12916-017-0876-7
    BACKGROUND: The relationship between body size and prostate cancer risk, and in particular risk by tumour characteristics, is not clear because most studies have not differentiated between high-grade or advanced stage tumours, but rather have assessed risk with a combined category of aggressive disease. We investigated the association of height and adiposity with incidence of and death from prostate cancer in 141,896 men in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.

    METHODS: Multivariable-adjusted Cox proportional hazards models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs). After an average of 13.9 years of follow-up, there were 7024 incident prostate cancers and 934 prostate cancer deaths.

    RESULTS: Height was not associated with total prostate cancer risk. Subgroup analyses showed heterogeneity in the association with height by tumour grade (P heterogeneity = 0.002), with a positive association with risk for high-grade but not low-intermediate-grade disease (HR for high-grade disease tallest versus shortest fifth of height, 1.54; 95% CI, 1.18-2.03). Greater height was also associated with a higher risk for prostate cancer death (HR = 1.43, 1.14-1.80). Body mass index (BMI) was significantly inversely associated with total prostate cancer, but there was evidence of heterogeneity by tumour grade (P heterogeneity = 0.01; HR = 0.89, 0.79-0.99 for low-intermediate grade and HR = 1.32, 1.01-1.72 for high-grade prostate cancer) and stage (P heterogeneity = 0.01; HR = 0.86, 0.75-0.99 for localised stage and HR = 1.11, 0.92-1.33 for advanced stage). BMI was positively associated with prostate cancer death (HR = 1.35, 1.09-1.68). The results for waist circumference were generally similar to those for BMI, but the associations were slightly stronger for high-grade (HR = 1.43, 1.07-1.92) and fatal prostate cancer (HR = 1.55, 1.23-1.96).

    CONCLUSIONS: The findings from this large prospective study show that men who are taller and who have greater adiposity have an elevated risk of high-grade prostate cancer and prostate cancer death.

  14. Watts EL, Perez-Cornago A, Appleby PN, Albanes D, Ardanaz E, Black A, et al.
    Int J Cancer, 2019 Dec 15;145(12):3244-3256.
    PMID: 30873591 DOI: 10.1002/ijc.32276
    Insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) have been implicated in the aetiology of several cancers. To better understand whether anthropometric, behavioural and sociodemographic factors may play a role in cancer risk via IGF signalling, we examined the cross-sectional associations of these exposures with circulating concentrations of IGFs (IGF-I and IGF-II) and IGFBPs (IGFBP-1, IGFBP-2 and IGFBP-3). The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset includes individual participant data from 16,024 male controls (i.e. without prostate cancer) aged 22-89 years from 22 prospective studies. Geometric means of protein concentrations were estimated using analysis of variance, adjusted for relevant covariates. Older age was associated with higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGF-I, IGF-II and IGFBP-3. Higher body mass index was associated with lower concentrations of IGFBP-1 and IGFBP-2. Taller height was associated with higher concentrations of IGF-I and IGFBP-3 and lower concentrations of IGFBP-1. Smokers had higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGFBP-3 than nonsmokers. Higher alcohol consumption was associated with higher concentrations of IGF-II and lower concentrations of IGF-I and IGFBP-2. African Americans had lower concentrations of IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 and Hispanics had lower IGF-I, IGF-II and IGFBP-3 than non-Hispanic whites. These findings indicate that a range of anthropometric, behavioural and sociodemographic factors are associated with circulating concentrations of IGFs and IGFBPs in men, which will lead to a greater understanding of the mechanisms through which these factors influence cancer risk.
  15. Schmidt JA, Fensom GK, Rinaldi S, Scalbert A, Appleby PN, Achaintre D, et al.
    Int J Cancer, 2020 Feb 01;146(3):720-730.
    PMID: 30951192 DOI: 10.1002/ijc.32314
    Metabolomics may reveal novel insights into the etiology of prostate cancer, for which few risk factors are established. We investigated the association between patterns in baseline plasma metabolite profile and subsequent prostate cancer risk, using data from 3,057 matched case-control sets from the European Prospective Investigation into Cancer and Nutrition (EPIC). We measured 119 metabolite concentrations in plasma samples, collected on average 9.4 years before diagnosis, by mass spectrometry (AbsoluteIDQ p180 Kit, Biocrates Life Sciences AG). Metabolite patterns were identified using treelet transform, a statistical method for identification of groups of correlated metabolites. Associations of metabolite patterns with prostate cancer risk (OR1SD ) were estimated by conditional logistic regression. Supplementary analyses were conducted for metabolite patterns derived using principal component analysis and for individual metabolites. Men with metabolite profiles characterized by higher concentrations of either phosphatidylcholines or hydroxysphingomyelins (OR1SD  = 0.77, 95% confidence interval 0.66-0.89), acylcarnitines C18:1 and C18:2, glutamate, ornithine and taurine (OR1SD  = 0.72, 0.57-0.90), or lysophosphatidylcholines (OR1SD  = 0.81, 0.69-0.95) had lower risk of advanced stage prostate cancer at diagnosis, with no evidence of heterogeneity by follow-up time. Similar associations were observed for the two former patterns with aggressive disease risk (the more aggressive subset of advanced stage), while the latter pattern was inversely related to risk of prostate cancer death (OR1SD  = 0.77, 0.61-0.96). No associations were observed for prostate cancer overall or less aggressive tumor subtypes. In conclusion, metabolite patterns may be related to lower risk of more aggressive prostate tumors and prostate cancer death, and might be relevant to etiology of advanced stage prostate cancer.
  16. Smith Byrne K, Appleby PN, Key TJ, Holmes MV, Fensom GK, Agudo A, et al.
    Ann Oncol, 2019 Jun 01;30(6):983-989.
    PMID: 31089709 DOI: 10.1093/annonc/mdz121
    BACKGROUND: Microseminoprotein-beta (MSP), a protein secreted by the prostate epithelium, may have a protective role in the development of prostate cancer. The only previous prospective study found a 2% reduced prostate cancer risk per unit increase in MSP. This work investigates the association of MSP with prostate cancer risk using observational and Mendelian randomization (MR) methods.

    PATIENTS AND METHODS: A nested case-control study was conducted with the European Prospective Investigation into Cancer and Nutrition (EPIC) with 1871 cases and 1871 matched controls. Conditional logistic regression analysis was used to investigate the association of pre-diagnostic circulating MSP with risk of incident prostate cancer overall and by tumour subtype. EPIC-derived estimates were combined with published data to calculate an MR estimate using two-sample inverse-variance method.

    RESULTS: Plasma MSP concentrations were inversely associated with prostate cancer risk after adjusting for total prostate-specific antigen concentration [odds ratio (OR) highest versus lowest fourth of MSP = 0.65, 95% confidence interval (CI) 0.51-0.84, Ptrend = 0.001]. No heterogeneity in this association was observed by tumour stage or histological grade. Plasma MSP concentrations were 66% lower in rs10993994 TT compared with CC homozygotes (per allele difference in MSP: 6.09 ng/ml, 95% CI 5.56-6.61, r2=0.42). MR analyses supported a potentially causal protective association of MSP with prostate cancer risk (OR per 1 ng/ml increase in MSP for MR: 0.96, 95% CI 0.95-0.97 versus EPIC observational: 0.98, 95% CI 0.97-0.99). Limitations include lack of complete tumour subtype information and more complete information on the biological function of MSP.

    CONCLUSIONS: In this large prospective European study and using MR analyses, men with high circulating MSP concentration have a lower risk of prostate cancer. MSP may play a causally protective role in prostate cancer.

  17. Perez-Cornago A, Appleby PN, Tipper S, Key TJ, Allen NE, Nieters A, et al.
    Int J Cancer, 2017 Mar 01;140(5):1111-1118.
    PMID: 27870006 DOI: 10.1002/ijc.30528
    Insulin-like growth factor (IGF)-I has cancer promoting activities. However, the hypothesis that circulating IGF-I concentration is related to risk of lymphoma overall or its subtypes has not been examined prospectively. IGF-I concentration was measured in pre-diagnostic plasma samples from a nested case-control study of 1,072 cases of lymphoid malignancies and 1,072 individually matched controls from the European Prospective Investigation into Cancer and Nutrition. Odds ratios (ORs) and confidence intervals (CIs) for lymphoma were calculated using conditional logistic regression. IGF-I concentration was not associated with overall lymphoma risk (multivariable-adjusted OR for highest versus lowest third = 0.77 [95% CI = 0.57-1.03], ptrend  = 0.06). There was no statistical evidence of heterogeneity in this association with IGF-I by sex, age at blood collection, time between blood collection and diagnosis, age at diagnosis, or body mass index (pheterogeneity for all  ≥ 0.05). There were no associations between IGF-I concentration and risk for specific BCL subtypes, T-cell lymphoma or Hodgkin lymphoma, although number of cases were small. In this European population, IGF-I concentration was not associated with risk of overall lymphoma. This study provides the first prospective evidence on circulating IGF-I concentrations and risk of lymphoma. Further prospective data are required to examine associations of IGF-I concentrations with lymphoma subtypes.
  18. Freisling H, Pisa PT, Ferrari P, Byrnes G, Moskal A, Dahm CC, et al.
    Eur J Nutr, 2016 Sep;55(6):2093-104.
    PMID: 26303194 DOI: 10.1007/s00394-015-1023-x
    PURPOSE: Various food patterns have been associated with weight change in adults, but it is unknown which combinations of nutrients may account for such observations. We investigated associations between main nutrient patterns and prospective weight change in adults.

    METHODS: This study includes 235,880 participants, 25-70 years old, recruited between 1992 and 2000 in 10 European countries. Intakes of 23 nutrients were estimated from country-specific validated dietary questionnaires using the harmonized EPIC Nutrient DataBase. Four nutrient patterns, explaining 67 % of the total variance of nutrient intakes, were previously identified from principal component analysis. Body weight was measured at recruitment and self-reported 5 years later. The relationship between nutrient patterns and annual weight change was examined separately for men and women using linear mixed models with random effect according to center controlling for confounders.

    RESULTS: Mean weight gain was 460 g/year (SD 950) and 420 g/year (SD 940) for men and women, respectively. The annual differences in weight gain per one SD increase in the pattern scores were as follows: principal component (PC) 1, characterized by nutrients from plant food sources, was inversely associated with weight gain in men (-22 g/year; 95 % CI -33 to -10) and women (-18 g/year; 95 % CI -26 to -11). In contrast, PC4, characterized by protein, vitamin B2, phosphorus, and calcium, was associated with a weight gain of +41 g/year (95 % CI +2 to +80) and +88 g/year (95 % CI +36 to +140) in men and women, respectively. Associations with PC2, a pattern driven by many micro-nutrients, and with PC3, a pattern driven by vitamin D, were less consistent and/or non-significant.

    CONCLUSIONS: We identified two main nutrient patterns that are associated with moderate but significant long-term differences in weight gain in adults.

  19. Zamora-Ros R, Knaze V, Rothwell JA, Hémon B, Moskal A, Overvad K, et al.
    Eur J Nutr, 2016 Jun;55(4):1359-75.
    PMID: 26081647 DOI: 10.1007/s00394-015-0950-x
    BACKGROUND/OBJECTIVES: Polyphenols are plant secondary metabolites with a large variability in their chemical structure and dietary occurrence that have been associated with some protective effects against several chronic diseases. To date, limited data exist on intake of polyphenols in populations. The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort.

    METHODS: Dietary data at baseline were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing.

    RESULTS: Mean total polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group, followed by non-Mediterranean (non-MED) and MED countries. The main polyphenol contributors were phenolic acids (52.5-56.9 %), except in men from MED countries and in the UK health-conscious group where they were flavonoids (49.1-61.7 %). Coffee, tea, and fruits were the most important food sources of total polyphenols. A total of 437 different individual polyphenols were consumed, including 94 consumed at a level >1 mg/day. The most abundant ones were the caffeoylquinic acids and the proanthocyanidin oligomers and polymers.

    CONCLUSION: This study describes the large number of dietary individual polyphenols consumed and the high variability of their intakes between European populations, particularly between MED and non-MED countries.

  20. Carayol M, Leitzmann MF, Ferrari P, Zamora-Ros R, Achaintre D, Stepien M, et al.
    J Proteome Res, 2017 Sep 01;16(9):3137-3146.
    PMID: 28758405 DOI: 10.1021/acs.jproteome.6b01062
    Metabolomics is now widely used to characterize metabolic phenotypes associated with lifestyle risk factors such as obesity. The objective of the present study was to explore the associations of body mass index (BMI) with 145 metabolites measured in blood samples in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolites were measured in blood from 392 men from the Oxford (UK) cohort (EPIC-Oxford) and in 327 control subjects who were part of a nested case-control study on hepatobiliary carcinomas (EPIC-Hepatobiliary). Measured metabolites included amino acids, acylcarnitines, hexoses, biogenic amines, phosphatidylcholines, and sphingomyelins. Linear regression models controlled for potential confounders and multiple testing were run to evaluate the associations of metabolite concentrations with BMI. 40 and 45 individual metabolites showed significant differences according to BMI variations, in the EPIC-Oxford and EPIC-Hepatobiliary subcohorts, respectively. Twenty two individual metabolites (kynurenine, one sphingomyelin, glutamate and 19 phosphatidylcholines) were associated with BMI in both subcohorts. The present findings provide additional knowledge on blood metabolic signatures of BMI in European adults, which may help identify mechanisms mediating the relationship of BMI with obesity-related diseases.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links