Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Perrone G, Giuffrida M, Abu-Zidan F, Kruger VF, Livrini M, Petracca GL, et al.
    World J Emerg Surg, 2024 Apr 16;19(1):14.
    PMID: 38627831 DOI: 10.1186/s13017-024-00543-w
    BACKGROUND: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA.

    METHODS: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up.

    RESULTS: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P 

  2. Islam MN, Dungani R, Abdul Khalil H, Alwani MS, Nadirah WW, Fizree HM
    Springerplus, 2013;2:592.
    PMID: 25674417 DOI: 10.1186/2193-1801-2-592
    In this study, a green composite was produced from Oil Palm Trunk Lumber (OPTL) by impregnating oil palm shell (OPS) nanoparticles with formaldehyde resin. The changes of physical, mechanical and morphological properties of the OPS nanoparticles impregnated OPTL as a result of natural weathering was investigated. The OPS fibres were ground with a ball-mill for producing nanoparticles before being mixed with the phenol formaldehyde (PF) resin at a concentration of 1, 3, 5 and 10% w/w basis and impregnated into the OPTL by vacuum-pressure method. The treated OPTL samples were exposed to natural weathering for the period of 6 and 12 months in West Java, Indonesia according to ASTM D1435-99 standard. Physical and mechanical tests were done for analyzing the changes in phenol formaldehyde-nanoparticles impregnated (PF-NPI) OPTL. FT-IR and SEM studies were done to analyze the morphological changes. The results showed that both exposure time of weathering and concentration of PF-NPI had significant impact on physical and mechanical properties of OPTL. The longer exposure of samples to weathering condition reduced the wave numbers during FT-IR test. However, all these physical, mechanical and morphological changes were significant when compared with the untreated samples or only PF impregnated samples. Thus, it can be concluded that PF-NP impregnation into OPTL improved the resistance against natural weathering and would pave the ground for improved products from OPTL for outdoor conditions.
  3. Ismail I, Arliyani, Jalil Z, Mursal, Olaiya NG, Abdullah CK, et al.
    Polymers (Basel), 2020 Sep 28;12(10).
    PMID: 32998404 DOI: 10.3390/polym12102236
    Conventionally, panel boards are produced with material flex or microparticle with P.U. or U.F. as adhesives. However, in this study, nanoparticle with epoxy resin as an adhesive was used to produce nanoboard. Coconut shell nanoparticle composite with epoxy resin as an adhesive was prepared using a compression molding technique. The coconut shell particles were originally 200 mesh size and then milled mechanically with a ball mill for the duration of 10, 20, 30, and 40 h (milling times) to produce nanoparticles. The composition ratio of the composite is 85 vol.% of coconut shell and 15 vol.% of epoxy resin. The formation of nanoparticles was observed with transmission electron microscopy (TEM). The mechanical, physical, and microstructure properties of the composite were examined with X-ray diffraction, scanning electron microscopy, atomic force microscopy, and universal testing machine. The results established that the properties of the composite (microstructures, mechanical, and physical) are influenced by the duration of milling of coconut shell particles. The modulus and flexural strength of the composite improved with an increase in the milling time. The density, thickness swelling, and porosity of the composite were also influenced by the milling times. The result suggested that the composite properties were influenced by the particle size of the coconut shell. The coconut shell nanoparticle composite can be used in the manufacturing of hybrid panels and board.
  4. Rizal S, Ikramullah, Gopakumar DA, Thalib S, Huzni S, Abdul Khalil HPS
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961241 DOI: 10.3390/polym10121316
    Natural fiber composites have been widely used for various applications such as automotive components, aircraft components and sports equipment. Among the natural fibers Typha spp have gained considerable attention to replace synthetic fibers due to their unique nature. The untreated and alkali-treated fibers treated in different durations were dried under the sun for 4 h prior to the fabrication of Typha fiber reinforced epoxy composites. The chemical structure and crystallinity index of composites were examined via FT-IR and XRD respectively. The tensile, flexural and impact tests were conducted to investigate the effect of the alkali treated Typha fibers on the epoxy composite. From the microscopy analysis, it was observed that the fracture mechanism of the composite was due to the fiber and matrix debonding, fiber pull out from the matrix, and fiber damage. The tensile, flexural and impact strength of the Typha fiber reinforced epoxy composite were increased after 5% alkaline immersion compared to untreated Typha fiber composite. From these results, it can be concluded that the alkali treatment on Typha fiber could improve the interfacial compatibility between epoxy resin and Typha fiber, which resulted in the better mechanical properties and made the composite more hydrophobic. So far there is no comprehensive report about Typha fiber reinforcing epoxy composite, investigating the effect of the alkali treatment duration on the interfacial compatibility, and their effect on chemical and mechanical of Typha fiber reinforced composite, which plays a vital role to provide the overall mechanical performance to the composite.
  5. Rizal S, Olaiya FG, Saharudin NI, Abdullah CK, N G O, Mohamad Haafiz MK, et al.
    Polymers (Basel), 2021 Jan 20;13(3).
    PMID: 33498323 DOI: 10.3390/polym13030325
    Textile waste cellulose nanofibrillated fibre has been reported with excellent strength reinforcement ability in other biopolymers. In this research cellulose nanofibrilated fibre (CNF) was isolated from the textile waste cotton fabrics with combined supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was used to enhance the polylactic acid/chitin (PLA/chitin) properties. The properties enhancement effect of the CNF was studied by characterising the PLA/chitin/CNF biocomposite for improved mechanical, thermal, and morphological properties. The tensile properties, impact strength, dynamic mechanical analysis, thermogravimetry analysis, scanning electron microscopy, and the PLA/chitin/CNF biocomposite wettability were studied. The result showed that the tensile strength, elongation, tensile modulus, and impact strength improved significantly with chitin and CNF compared with the neat PLA. Furthermore, the scanning electron microscopy SEM (Scanning Electron Microscopy) morphological images showed uniform distribution and dispersion of the three polymers in each other, which corroborate the improvement in mechanical properties. The biocomposite's water absorption increased more than the neat PLA, and the contact angle was reduced. The results of the ternary blend compared with PLA/chitin binary blend showed significant enhancement with CNF. This showed that the three polymers' combination resulted in a better material property than the binary blend.
  6. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, et al.
    Polymers (Basel), 2019 Oct 11;11(10).
    PMID: 31614623 DOI: 10.3390/polym11101656
    This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.
  7. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
  8. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, et al.
    Polymers (Basel), 2020 Apr 13;12(4).
    PMID: 32294999 DOI: 10.3390/polym12040903
    The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions' adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
  9. Nuryawan A, Abdullah CK, Hazwan CM, Olaiya NG, Yahya EB, Risnasari I, et al.
    Polymers (Basel), 2020 Apr 27;12(5).
    PMID: 32349385 DOI: 10.3390/polym12051007
    Using oil palm trunk (OPT) layered with empty fruit bunch (EFB), so-called hybrid plywood enhanced with palm oil ash nanoparticles, with phenol-formaldehyde (PF) resin as a binder, was produced in this study. The phenol-formaldehyde (PF) resins filled with different loading of oil palm ash (OPA) nanoparticles were prepared and used as glue for layers of the oil palm trunk (OPT) veneer and empty fruit bunch fibre mat. The resulting hybrid plywood produced was characterised. The physical, mechanical, thermal, and morphological properties of the hybrid plywood panels were investigated. The results obtained showed that the presence of OPA nanoparticles significantly affected the physical, mechanical, and thermal properties of the plywood panels. Significant improvements in dimension from water absorption and thickness swelling experiments were obtained for the plywood panels with the highest OPA nanoparticles loading in PF resin. The mechanical properties indicated that plywood composites showed improvement in flexural, shear, and impact properties until a certain loading of OPA nanoparticles in PF resin. Fracture surface morphology also showed the effectiveness of OPA nanoparticles in the reduction of layer breakage due to force and stress distribution. The thermal stability performance showed that PF filled OPA nanoparticles contributed to the thermal stability of the plywood panels. Therefore, the results obtained in this study showed that OPA nanoparticles certainly improved the characteristic of the hybrid plywood.
  10. Iqhrammullah M, Marlina M, Khalil HPSA, Kurniawan KH, Suyanto H, Hedwig R, et al.
    Polymers (Basel), 2020 Jun 09;12(6).
    PMID: 32526903 DOI: 10.3390/polym12061317
    Global pollution from toxic metal waste has resulted in increased research on toxic metal adsorption. A cellulose acetate-polyurethane (CA-PU) film adsorbent was successfully prepared in this research. The cellulose acetate-polyurethane film adsorbent was prepared with a polycondensation reaction between cellulose acetate and methylene diphenyl diisocyanate. The CA-PU bond formation was confirmed by functional group analysis obtained from Fourier transform infrared (FTIR) spectroscopy. The obtained film was characterized for improved tensile and thermal properties with the addition of methylene diphenyl diisocyanate (MDI). The adsorption ability of the obtained film was evaluated with laser-induced breakdown spectroscopy (LIBS). The best film adsorbent from the LIBS was selected and studied for adsorption isotherm. The FTIR analysis confirmed the formation of the CA-PU bond from the polycondensation between cellulose acetate and the methylene diphenyl diisocyanate. The result showed that the addition of methylene diphenyl diisocyanate (MDI) resulted in the urethane network's growth. The characterization result showed an improvement in the morphology, thermal stability, and tensile strength of the film. The LIBS studies showed improvement in the adsorption of Pb2+ with CA-PU compared with the neat CA. The isotherm studies revealed that Pb2+ adsorption by cellulose acetate-polyurethane film adsorbent was heterogeneously dependent on the Freundlich isotherm model (R2 = 0.97044). Overall, the polycondensation method proposed by this study enhanced the Pb2+ removal, and was comparable to those reported in previous studies.
  11. M H, Chong EWN, Jafarzadeh S, Paridah MT, Gopakumar DA, Tajarudin HA, et al.
    Polymers (Basel), 2019 Jan 26;11(2).
    PMID: 30960194 DOI: 10.3390/polym11020210
    This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate⁻ (MB⁻CaCO₃) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate⁻ (C⁻CaCO₃) based red seaweed bio-film with the conventional biodegradable mulch film. To the best of our knowledge, there has been limited research on the application of commercial CaCO₃ (C⁻CaCO₃) and microbially induced CaCO₃ (MB⁻CaCO₃) as fillers for the preparation of films from seaweed bio-polymer and comparison with biodegradable commercial plasticulture packaging. The results revealed that the mechanical, contact angle, and biodegradability properties of the polymer composite films incorporated with C⁻CaCO₃ and MB⁻CaCO₃ fillers were comparable or even superior than the conventional biodegradable mulch film. The seaweed polymer film incorporated with MB⁻CaCO₃ showed the highest contact angle of 100.94°, whereas conventional biodegradable mulch film showed a contact angle of 90.25°. The enhanced contact angle of MB⁻CaCO₃ resulted in high barrier properties, which is highly desired in the current scenario for plasticulture packaging application. The water vapor permeability of MB⁻CaCO₃ based seaweed films was low (2.05 ± 1.06 g·m/m²·s·Pa) when compared to conventional mulch film (2.68 ± 0.35 g·m/m²·s·Pa), which makes the fabricated film an ideal candidate for plasticulture application. The highest tensile strength (TS) was achieved by seaweed-based film filled with commercial CaCO₃ (84.92% higher than conventional mulch film). SEM images of the fractured surfaces of the fabricated films revealed the strong interaction between seaweed and fillers. Furthermore, composite films incorporated with MB⁻CaCO₃ promote brighter film, better water barrier, hydrophobicity, and biodegradability compared to C⁻CaCO₃ based seaweed polymer film and conventional mulch film. From this demonstrated work, it can be concluded that the fabricated MB⁻CaCO₃ based seaweed biopolymer film will be a promising candidate for plasticulture and agricultural application.
  12. Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, et al.
    Polymers (Basel), 2022 Nov 25;14(23).
    PMID: 36501521 DOI: 10.3390/polym14235126
    The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
  13. Jummaat F, Yahya EB, Khalil H P S A, Adnan AS, Alqadhi AM, Abdullah CK, et al.
    Polymers (Basel), 2021 Feb 20;13(4).
    PMID: 33672526 DOI: 10.3390/polym13040633
    Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
  14. Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain MS, et al.
    Polymers (Basel), 2020 Aug 06;12(8).
    PMID: 32781602 DOI: 10.3390/polym12081759
    Cellulose nanomaterials from plant fibre provide various potential applications (i.e., biomedical, automotive, packaging, etc.). The biomedical application of nanocellulose isolated from plant fibre, which is a carbohydrate-based source, is very viable in the 21st century. The essential characteristics of plant fibre-based nanocellulose, which include its molecular, tensile and mechanical properties, as well as its biodegradability potential, have been widely explored for functional materials in the preparation of aerogel. Plant cellulose nano fibre (CNF)-based aerogels are novel functional materials that have attracted remarkable interest. In recent years, CNF aerogel has been extensively used in the biomedical field due to its biocompatibility, renewability and biodegradability. The effective surface area of CNFs influences broad applications in biological and medical studies such as sustainable antibiotic delivery for wound healing, the preparation of scaffolds for tissue cultures, the development of drug delivery systems, biosensing and an antimicrobial film for wound healing. Many researchers have a growing interest in using CNF-based aerogels in the mentioned applications. The application of cellulose-based materials is widely reported in the literature. However, only a few studies discuss the potential of cellulose nanofibre aerogel in detail. The potential applications of CNF aerogel include composites, organic-inorganic hybrids, gels, foams, aerogels/xerogels, coatings and nano-paper, bioactive and wound dressing materials and bioconversion. The potential applications of CNF have rarely been a subject of extensive review. Thus, extensive studies to develop materials with cheaper and better properties, high prospects and effectiveness for many applications are the focus of the present work. The present review focuses on the evolution of aerogels via characterisation studies on the isolation of CNF-based aerogels. The study concludes with a description of the potential and challenges of developing sustainable materials for biomedical applications.
  15. Jamaluddin NA, Mohamed A, Bakar SA, Ardyani T, Sagisaka M, Saito H, et al.
    Phys Chem Chem Phys, 2021 Sep 15;23(35):19313-19328.
    PMID: 34524298 DOI: 10.1039/d1cp02206g
    Previously, surfactant-assisted exfoliated graphene oxide (sEGO) formed with the triple-chain surfactant TC14 (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate) was applied in wastewater treatment. The extent of dye-removal and the adsorption capacity of the sEGO formed with this triple-chain surfactant outperformed those of two other systems, namely, the di-chain version of TC14 (AOT14; sodium 1,2-bis-(2,2-dimethyl-propoxycarbonyl)-ethanesulfonate) and the single-chain surfactant sodium n-dodecylsulfate. In the present study, to further optimise the surfactant chemical structure, the sodium ion of TC14 was substituted with 1-butyl-3-methyl-imidazolium (BMIM) generating surfactant ionic liquids (SAILs; 1-butyl-3-imidazolium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate), hereafter denoted as BMIM-TC14. This SAIL, together with nanofibrillated kenaf cellulose (NFC), was used to electrochemically exfoliate graphite, yielding BMIM-TC14 sEGO/NFC composites. These highly hydrophobic polymer composites were then used for the removal of methylene blue (MB) from aqueous solution. 1H NMR spectroscopy was used to elucidate the structure of the synthesised SAILs. The morphologies of the resulting nanocomposites were investigated using Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Analysis using small-angle neutron scattering was performed to examine the aggregation behaviour of sEGO and custom-made SAILs. Zeta potential, surface tension, and dynamic light-scattering measurements were used to study the aqueous properties and colloidal stability of the suspension. Amongst the surfactants tested, BMIM-TC14 sEGO/NFC exhibited the highest MB adsorption ability, achieving 99% dye removal under optimum conditions. These results highlight the importance of modifying the hydrophilic moieties of amphiphilic compounds to improve the performance of sEGO/NFC composites as effective adsorbents for wastewater treatment.
  16. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
  17. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HPS, Amirul AA
    Mater Sci Eng C Mater Biol Appl, 2016 Sep 01;66:147-155.
    PMID: 27207048 DOI: 10.1016/j.msec.2016.03.102
    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20mol% 4HB [53.2°], P(3HB-co-35mol%4HB)[48.9°], P(3HB-co-50mol%4HB)[44.5°] and P(3HB-co-82mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique.
  18. Ikramullah, Rizal S, Nakai Y, Shiozawa D, Khalil HPSA, Huzni S, et al.
    Materials (Basel), 2019 Jul 10;12(14).
    PMID: 31295885 DOI: 10.3390/ma12142225
    The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.
  19. Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, Abdul Khalil HPS, Mushtaq RY, et al.
    Macromol Rapid Commun, 2024 Mar 02.
    PMID: 38430068 DOI: 10.1002/marc.202300687
    Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments have been hampered by their side effects, often causing severe discomfort to patients. Researchers have been exploring innovative approaches to target cancer cells selectively. In this context, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli, including temperature, pH variations, magnetic fields, and redox potential. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, we discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications. This article is protected by copyright. All rights reserved.
  20. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links