Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  2. Perrone G, Giuffrida M, Abu-Zidan F, Kruger VF, Livrini M, Petracca GL, et al.
    World J Emerg Surg, 2024 Apr 16;19(1):14.
    PMID: 38627831 DOI: 10.1186/s13017-024-00543-w
    BACKGROUND: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA.

    METHODS: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up.

    RESULTS: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P 

  3. Ng LF, Barr I, Nguyen T, Noor SM, Tan RS, Agathe LV, et al.
    BMC Infect Dis, 2006;6:40.
    PMID: 16512903
    Continuous outbreaks of the highly pathogenic H5N1 avian influenza A in Asia has resulted in an urgent effort to improve current diagnostics to aid containment of the virus and lower the threat of a influenza pandemic. We report here the development of a PCR-based assay that is highly specific for the H5N1 avian influenza A virus.
  4. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
  5. Jamaluddin NA, Mohamed A, Bakar SA, Ardyani T, Sagisaka M, Saito H, et al.
    Phys Chem Chem Phys, 2021 Sep 15;23(35):19313-19328.
    PMID: 34524298 DOI: 10.1039/d1cp02206g
    Previously, surfactant-assisted exfoliated graphene oxide (sEGO) formed with the triple-chain surfactant TC14 (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate) was applied in wastewater treatment. The extent of dye-removal and the adsorption capacity of the sEGO formed with this triple-chain surfactant outperformed those of two other systems, namely, the di-chain version of TC14 (AOT14; sodium 1,2-bis-(2,2-dimethyl-propoxycarbonyl)-ethanesulfonate) and the single-chain surfactant sodium n-dodecylsulfate. In the present study, to further optimise the surfactant chemical structure, the sodium ion of TC14 was substituted with 1-butyl-3-methyl-imidazolium (BMIM) generating surfactant ionic liquids (SAILs; 1-butyl-3-imidazolium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulfonate), hereafter denoted as BMIM-TC14. This SAIL, together with nanofibrillated kenaf cellulose (NFC), was used to electrochemically exfoliate graphite, yielding BMIM-TC14 sEGO/NFC composites. These highly hydrophobic polymer composites were then used for the removal of methylene blue (MB) from aqueous solution. 1H NMR spectroscopy was used to elucidate the structure of the synthesised SAILs. The morphologies of the resulting nanocomposites were investigated using Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Analysis using small-angle neutron scattering was performed to examine the aggregation behaviour of sEGO and custom-made SAILs. Zeta potential, surface tension, and dynamic light-scattering measurements were used to study the aqueous properties and colloidal stability of the suspension. Amongst the surfactants tested, BMIM-TC14 sEGO/NFC exhibited the highest MB adsorption ability, achieving 99% dye removal under optimum conditions. These results highlight the importance of modifying the hydrophilic moieties of amphiphilic compounds to improve the performance of sEGO/NFC composites as effective adsorbents for wastewater treatment.
  6. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
  7. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

  8. Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, et al.
    Polymers (Basel), 2020 Mar 05;12(3).
    PMID: 32151004 DOI: 10.3390/polym12030592
    The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
  9. Nuryawan A, Abdullah CK, Hazwan CM, Olaiya NG, Yahya EB, Risnasari I, et al.
    Polymers (Basel), 2020 Apr 27;12(5).
    PMID: 32349385 DOI: 10.3390/polym12051007
    Using oil palm trunk (OPT) layered with empty fruit bunch (EFB), so-called hybrid plywood enhanced with palm oil ash nanoparticles, with phenol-formaldehyde (PF) resin as a binder, was produced in this study. The phenol-formaldehyde (PF) resins filled with different loading of oil palm ash (OPA) nanoparticles were prepared and used as glue for layers of the oil palm trunk (OPT) veneer and empty fruit bunch fibre mat. The resulting hybrid plywood produced was characterised. The physical, mechanical, thermal, and morphological properties of the hybrid plywood panels were investigated. The results obtained showed that the presence of OPA nanoparticles significantly affected the physical, mechanical, and thermal properties of the plywood panels. Significant improvements in dimension from water absorption and thickness swelling experiments were obtained for the plywood panels with the highest OPA nanoparticles loading in PF resin. The mechanical properties indicated that plywood composites showed improvement in flexural, shear, and impact properties until a certain loading of OPA nanoparticles in PF resin. Fracture surface morphology also showed the effectiveness of OPA nanoparticles in the reduction of layer breakage due to force and stress distribution. The thermal stability performance showed that PF filled OPA nanoparticles contributed to the thermal stability of the plywood panels. Therefore, the results obtained in this study showed that OPA nanoparticles certainly improved the characteristic of the hybrid plywood.
  10. Mohamed A, Ardyani T, Abu Bakar S, Sagisaka M, Umetsu Y, Hamon JJ, et al.
    J Colloid Interface Sci, 2018 Apr 15;516:34-47.
    PMID: 29360058 DOI: 10.1016/j.jcis.2018.01.041
    HYPOTHESIS: Graphene nanoplatelets (GNPs) can be dispersed in natural rubber matrices using surfactants. The stability and properties of these composites can be optimized by the choice of surfactants employed as stabilizers. Surfactants can be designed and synthesized to have enhanced compatibility with GNPs as compared to commercially available common surfactants. Including aromatic groups in the hydrophobic chain termini improves graphene compatibility of surfactants, which is expected to increase with the number of aromatic moieties per surfactant molecule. Hence, it is of interest to study the relationship between molecular structure, dispersion stability and electrical conductivity enhancement for single-, double-, and triple-chain anionic graphene-compatible surfactants.

    EXPERIMENTS: Graphene-philic surfactants, bearing two and three chains phenylated at their chain termini, were synthesized and characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy. These were used to formulate and stabilize dispersion of GNPs in natural rubber latex matrices, and the properties of systems comprising the new phenyl-surfactants were compared with commercially available surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). Raman spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM) were used to study structural properties of the materials. Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between surfactant architecture and nanocomposite properties. Small-angle neutron scattering (SANS) was used to study self-assembly structure of surfactants.

    FINDINGS: Of these different surfactants, the tri-chain aromatic surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly graphene-compatible (nanocomposite electrical conductivity = 2.22 × 10-5 S cm-1), demonstrating enhanced electrical conductivity over nine orders of magnitude higher than neat natural rubber-latex matrix (1.51 × 10-14 S cm-1). Varying the number of aromatic moieties in the surfactants appears to cause significant differences to the final properties of the nanocomposites.

  11. Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, Abdul Khalil HPS, Mushtaq RY, et al.
    Macromol Rapid Commun, 2024 Mar 02.
    PMID: 38430068 DOI: 10.1002/marc.202300687
    Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments have been hampered by their side effects, often causing severe discomfort to patients. Researchers have been exploring innovative approaches to target cancer cells selectively. In this context, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli, including temperature, pH variations, magnetic fields, and redox potential. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, we discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications. This article is protected by copyright. All rights reserved.
  12. Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain MS, et al.
    Polymers (Basel), 2020 Aug 06;12(8).
    PMID: 32781602 DOI: 10.3390/polym12081759
    Cellulose nanomaterials from plant fibre provide various potential applications (i.e., biomedical, automotive, packaging, etc.). The biomedical application of nanocellulose isolated from plant fibre, which is a carbohydrate-based source, is very viable in the 21st century. The essential characteristics of plant fibre-based nanocellulose, which include its molecular, tensile and mechanical properties, as well as its biodegradability potential, have been widely explored for functional materials in the preparation of aerogel. Plant cellulose nano fibre (CNF)-based aerogels are novel functional materials that have attracted remarkable interest. In recent years, CNF aerogel has been extensively used in the biomedical field due to its biocompatibility, renewability and biodegradability. The effective surface area of CNFs influences broad applications in biological and medical studies such as sustainable antibiotic delivery for wound healing, the preparation of scaffolds for tissue cultures, the development of drug delivery systems, biosensing and an antimicrobial film for wound healing. Many researchers have a growing interest in using CNF-based aerogels in the mentioned applications. The application of cellulose-based materials is widely reported in the literature. However, only a few studies discuss the potential of cellulose nanofibre aerogel in detail. The potential applications of CNF aerogel include composites, organic-inorganic hybrids, gels, foams, aerogels/xerogels, coatings and nano-paper, bioactive and wound dressing materials and bioconversion. The potential applications of CNF have rarely been a subject of extensive review. Thus, extensive studies to develop materials with cheaper and better properties, high prospects and effectiveness for many applications are the focus of the present work. The present review focuses on the evolution of aerogels via characterisation studies on the isolation of CNF-based aerogels. The study concludes with a description of the potential and challenges of developing sustainable materials for biomedical applications.
  13. Majrashi MAA, Bairwan RD, Mushtaq RY, Khalil HPSA, Badr MY, Alissa M, et al.
    Int J Biol Macromol, 2024 May;266(Pt 2):131333.
    PMID: 38574916 DOI: 10.1016/j.ijbiomac.2024.131333
    This study investigates the potential of utilizing green chemically treated spent coffee grounds (SCGs) as micro biofiller reinforcement in Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) biopolymer composites. The aim is to assess the impact of varying SCG concentrations (1 %, 3 %, 5 %, and 7 %) on the functional, thermal, mechanical properties and biodegradability of the resulting composites with a PHBV matrix. The samples were produced through melt compounding using a twin-screw extruder and compression molding. The findings indicate successful dispersion and distribution of SCGs microfiller into PHBV. Chemical treatment of SCG microfiller enhanced the interfacial bonding between the SCG and PHBV, evidenced by higher water contact angles of the biopolymer composites. Field Emission Scanning Electron Microscopy (FE-SEM) confirmed the successful interaction of treated SCG microfiller, contributing to enhanced mechanical characteristics. A two-way ANOVA was conducted for statistical analysis. Mass losses observed after burying the materials in natural soil indicated that the composites degraded faster than the pure PHBV polymer suggesting that both composites are biodegradable, particularly at high levels of spent coffee grounds (SCG). Despite the possibility of agglomeration at higher concentrations, SCG incorporation resulted in improved functional properties, positioning the green biopolymer composite as a promising material for sustainable packaging and diverse applications.
  14. Haafiz MK, Hassan A, Khalil HP, Fazita MR, Islam MS, Inuwa IM, et al.
    Int J Biol Macromol, 2016 Apr;85:370-8.
    PMID: 26772914 DOI: 10.1016/j.ijbiomac.2016.01.004
    In this work, polylactic acid (PLA) reinforced cellulose nanowhiskers (CNW) were prepared through solution casting technique. The CNW was first isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) by using 64% H2SO4 and was designated as CNW-S. The optical microscopy revealed that the large particle of OPEFB-MCC has been broken down by the hydrolysis treatment. The atomic force microscopy confirmed that the CNW-S obtained is in nanoscale dimension and appeared in individual rod-like character. The produced CNW-S was then incorporated with PLA at 1, 3, and 5 parts per hundred (phr) resins for the PLA-CNW-S nanocomposite production. The synthesized nanocomposites were then characterized by a mean of tensile properties and thermal stability. Interestingly to note that incorporating of 3 phr/CNW-S in PLA improved the tensile strength by 61%. Also, CNW-S loading showed a positive impact on the Young's modulus of PLA. The elongation at break (Eb) of nanocomposites, however, decreased with the addition of CNW-S. Field emission scanning electron microscopy and transmission electron microscopy revealed that the CNW-S dispersed well in PLA at lower filler loading before it started to agglomerate at higher CNW-S loading (5phr). The DSC analysis of the nanocomposites obtained showed that Tg,Tcc and Tm values of PLA were improved with CNW-S loading. The TGA analysis however, revealed that incopreated CNW-S in PLA effect the thermal stability (T10,T50 and Tmax) of nanocomposite, where it decrease linearly with CNW-S loading.
  15. Hasan M, Gopakumar DA, Olaiya NG, Zarlaida F, Alfian A, Aprinasari C, et al.
    Int J Biol Macromol, 2020 Aug 01;156:896-905.
    PMID: 32289410 DOI: 10.1016/j.ijbiomac.2020.04.039
    Biodegradable films composed of starch and chitosan plasticized by palm oil were fabricated via a solvent casting technique. In this study, the influence of the ratio of brown rice starch and chitosan on the mechanical, thermal, antimicrobial, and morphological properties of the films was investigated. Antimicrobial films with a smooth surface and a compact structure of brown rice starch were obtained. The results showed that a higher proportion of chitosan in the polymer blends resulted in a substantial enhancement in the tensile strength (TS) and thermal stability of the film. The TS values for BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 were 3.7, 15.2, 10.2, 9.3, and 8.8 MPa, respectively, and the elongation at break (EB) values of the BRS100, BRS30CH70, BRS50CH50, BRS70CH30, and CH100 samples were 39.5%, 34.7%, 7.3%, 11.5%, and 6.9%, respectively. The addition of chitosan to the brown rice starch samples resulted in a reduced water uptake of the film. The film with a balanced ratio of brown rice starch and chitosan exhibited excellent water resistance, with its water absorption being the lowest among all of the studied compositions.
  16. Thangamani GJ, Deshmukh K, Kovářík T, Nambiraj NA, Ponnamma D, Sadasivuni KK, et al.
    Chemosphere, 2021 Oct;280:130641.
    PMID: 33964741 DOI: 10.1016/j.chemosphere.2021.130641
    Over the last few decades, various volatile organic compounds (VOCs) have been widely used in the processing of building materials and this practice adversely affected the environment i.e. both indoor and outdoor air quality. A cost-effective solution for detecting a wide range of VOCs by sensing approaches includes chemiresistive, optical and electrochemical techniques. Room temperature (RT) chemiresistive gas sensors are next-generation technologies desirable for self-powered or battery-powered instruments utilized in monitoring emissions that are associated with indoor/outdoor air pollution and industrial processes. In this review, a state-of-the-art overview of chemiresistive gas sensors is provided based on their attractive analytical characteristics such as high sensitivity, selectivity, reproducibility, rapid assay time and low fabrication cost. The review mainly discusses the recent advancement and advantages of graphene oxide (GO) nanocomposites-based chemiresistive gas sensors and various factors affecting their sensing performance at RT. Besides, the sensing mechanisms of GO nanocomposites-based chemiresistive gas sensors derived using metals, transition metal oxides (TMOs) and polymers were discussed. Finally, the challenges and future perspectives of GO nanocomposites-based RT chemiresistive gas sensors are addressed.
  17. Olaiya NG, Surya I, Oke PK, Rizal S, Sadiku ER, Ray SS, et al.
    Polymers (Basel), 2019 Oct 11;11(10).
    PMID: 31614623 DOI: 10.3390/polym11101656
    This paper presents a comparison on the effects of blending chitin and/or starch with poly(lactic acid) (PLA). Three sets of composites (PLA-chitin, PLA-starch and PLA-chitin-starch) with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, thermal and microstructural properties were analyzed. The results from the tensile strength, yield strength, Young's modulus, and impact showed that the PLA-chitin-starch blend has the best mechanical properties compared to PLA-chitin and PLA-starch blends. The dynamic mechanical analysis result shows a better damping property for PLA-chitin than PLA-chitin-starch and PLA-starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) shows no significant improvement in a specific order, but the glass transition temperature of the composite increased compared to that of neat PLA. However, the degradation process was found to start with PLA-chitin for all composites, which suggests an improvement in PLA degradation. Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in the three composites. Interestingly, the network was more significant in the PLA-chitin-starch blend, which may be responsible for its significantly enhanced mechanical properties compared with PLA-chitin and PLA-starch samples.
  18. Iqhrammullah M, Marlina, Hedwig R, Karnadi I, Kurniawan KH, Olaiya NG, et al.
    Polymers (Basel), 2020 Apr 13;12(4).
    PMID: 32294999 DOI: 10.3390/polym12040903
    The use of polymeric material in heavy metal removal from wastewater is trending. Heavy metal removal from wastewater of the industrial process is of utmost importance in green/sustainable manufacturing. Production of absorbent materials from a natural source for industrial wastewater has been on the increase. In this research, polyurethane foam (PUF), an adsorbent used by industries to adsorb heavy metal from wastewater, was prepared from a renewable source. Castor oil-based polyurethane foam (COPUF) was produced and modified for improved adsorption performance using fillers, analyzed with laser-induced breakdown spectroscopy (LIBS). The fillers (zeolite, bentonite, and activated carbon) were added to the COPUF matrix allowing the modification on its surface morphology and charge. The materials were characterized using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), and thermal gravimetry analysis (TGA), while their adsorption performance was studied by comparing the LIBS spectra. The bentonite-modified COPUF (B/COPUF) gave the highest value of the normalized Pb I (405.7 nm) line intensity (2.3), followed by zeolite-modified COPUF (Z/COPUF) (1.9), and activated carbon-modified COPUF (AC/COPUF) (0.2), which indicates the adsorption performance of Pb2+ on the respective materials. The heavy metal ions' adsorption on the B/COPUF dominantly resulted from the electrostatic attraction. This study demonstrated the potential use of B/COPUF in adsorption and LIBS quantitative analysis of aqueous heavy metal ions.
  19. Iqhrammullah M, Marlina M, Khalil HPSA, Kurniawan KH, Suyanto H, Hedwig R, et al.
    Polymers (Basel), 2020 Jun 09;12(6).
    PMID: 32526903 DOI: 10.3390/polym12061317
    Global pollution from toxic metal waste has resulted in increased research on toxic metal adsorption. A cellulose acetate-polyurethane (CA-PU) film adsorbent was successfully prepared in this research. The cellulose acetate-polyurethane film adsorbent was prepared with a polycondensation reaction between cellulose acetate and methylene diphenyl diisocyanate. The CA-PU bond formation was confirmed by functional group analysis obtained from Fourier transform infrared (FTIR) spectroscopy. The obtained film was characterized for improved tensile and thermal properties with the addition of methylene diphenyl diisocyanate (MDI). The adsorption ability of the obtained film was evaluated with laser-induced breakdown spectroscopy (LIBS). The best film adsorbent from the LIBS was selected and studied for adsorption isotherm. The FTIR analysis confirmed the formation of the CA-PU bond from the polycondensation between cellulose acetate and the methylene diphenyl diisocyanate. The result showed that the addition of methylene diphenyl diisocyanate (MDI) resulted in the urethane network's growth. The characterization result showed an improvement in the morphology, thermal stability, and tensile strength of the film. The LIBS studies showed improvement in the adsorption of Pb2+ with CA-PU compared with the neat CA. The isotherm studies revealed that Pb2+ adsorption by cellulose acetate-polyurethane film adsorbent was heterogeneously dependent on the Freundlich isotherm model (R2 = 0.97044). Overall, the polycondensation method proposed by this study enhanced the Pb2+ removal, and was comparable to those reported in previous studies.
  20. M H, Chong EWN, Jafarzadeh S, Paridah MT, Gopakumar DA, Tajarudin HA, et al.
    Polymers (Basel), 2019 Jan 26;11(2).
    PMID: 30960194 DOI: 10.3390/polym11020210
    This study aimed to compare the performance of fabricated microbially induced precipitated calcium carbonate⁻ (MB⁻CaCO₃) based red seaweed (Kappaphycus alvarezii) bio-polymer film and commercial calcium carbonate⁻ (C⁻CaCO₃) based red seaweed bio-film with the conventional biodegradable mulch film. To the best of our knowledge, there has been limited research on the application of commercial CaCO₃ (C⁻CaCO₃) and microbially induced CaCO₃ (MB⁻CaCO₃) as fillers for the preparation of films from seaweed bio-polymer and comparison with biodegradable commercial plasticulture packaging. The results revealed that the mechanical, contact angle, and biodegradability properties of the polymer composite films incorporated with C⁻CaCO₃ and MB⁻CaCO₃ fillers were comparable or even superior than the conventional biodegradable mulch film. The seaweed polymer film incorporated with MB⁻CaCO₃ showed the highest contact angle of 100.94°, whereas conventional biodegradable mulch film showed a contact angle of 90.25°. The enhanced contact angle of MB⁻CaCO₃ resulted in high barrier properties, which is highly desired in the current scenario for plasticulture packaging application. The water vapor permeability of MB⁻CaCO₃ based seaweed films was low (2.05 ± 1.06 g·m/m²·s·Pa) when compared to conventional mulch film (2.68 ± 0.35 g·m/m²·s·Pa), which makes the fabricated film an ideal candidate for plasticulture application. The highest tensile strength (TS) was achieved by seaweed-based film filled with commercial CaCO₃ (84.92% higher than conventional mulch film). SEM images of the fractured surfaces of the fabricated films revealed the strong interaction between seaweed and fillers. Furthermore, composite films incorporated with MB⁻CaCO₃ promote brighter film, better water barrier, hydrophobicity, and biodegradability compared to C⁻CaCO₃ based seaweed polymer film and conventional mulch film. From this demonstrated work, it can be concluded that the fabricated MB⁻CaCO₃ based seaweed biopolymer film will be a promising candidate for plasticulture and agricultural application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links