Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, et al.
    Biomed Eng Online, 2024 Feb 22;23(1):24.
    PMID: 38388416 DOI: 10.1186/s12938-024-01206-2
    Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
  2. Ooi JH, Lim R, Seng H, Tan MP, Goh CH, Lovell NH, et al.
    Biomed Eng Online, 2024 Feb 20;23(1):23.
    PMID: 38378540 DOI: 10.1186/s12938-024-01202-6
    PURPOSE: Non-invasive, beat-to-beat variations in physiological indices provide an opportunity for more accessible assessment of autonomic dysfunction. The potential association between the changes in these parameters and arterial stiffness in hypertension remains poorly understood. This systematic review aims to investigate the association between non-invasive indicators of autonomic function based on beat-to-beat cardiovascular signals with arterial stiffness in individuals with hypertension.

    METHODS: Four electronic databases were searched from inception to June 2022. Studies that investigated non-invasive parameters of arterial stiffness and autonomic function using beat-to-beat cardiovascular signals over a period of > 5min were included. Study quality was assessed using the STROBE criteria. Two authors screened the titles, abstracts, and full texts independently.

    RESULTS: Nineteen studies met the inclusion criteria. A comprehensive overview of experimental design for assessing autonomic function in terms of baroreflex sensitivity and beat-to-beat cardiovascular variabilities, as well as arterial stiffness, was presented. Alterations in non-invasive indicators of autonomic function, which included baroreflex sensitivity, beat-to-beat cardiovascular variabilities and hemodynamic changes in response to autonomic challenges, as well as arterial stiffness, were identified in individuals with hypertension. A mixed result was found in terms of the association between non-invasive quantitative autonomic indices and arterial stiffness in hypertensive individuals. Nine out of 12 studies which quantified baroreflex sensitivity revealed a significant association with arterial stiffness parameters. Three studies estimated beat-to-beat heart rate variability and only one study reported a significant relationship with arterial stiffness indices. Three out of five studies which studied beat-to-beat blood pressure variability showed a significant association with arterial structural changes. One study revealed that hemodynamic changes in response to autonomic challenges were significantly correlated with arterial stiffness parameters.

    CONCLUSIONS: The current review demonstrated alteration in autonomic function, which encompasses both the sympathetic and parasympathetic modulation of sinus node function and vasomotor tone (derived from beat-to-beat cardiovascular signals) in hypertension, and a significant association between some of these parameters with arterial stiffness. By employing non-invasive measurements to monitor changes in autonomic function and arterial remodeling in individuals with hypertension, we would be able to enhance our ability to identify individuals at high risk of cardiovascular disease. Understanding the intricate relationships among these cardiovascular variability measures and arterial stiffness could contribute toward better individualized treatment for hypertension in the future.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO ID: CRD42022336703. Date of registration: 12/06/2022.

  3. Ho JJ, Zakarija-Grkovic I, Lok JW, Lim E, Subramaniam P, Leong JJ
    Cochrane Database Syst Rev, 2023 Jul 18;7(7):CD013660.
    PMID: 37481707 DOI: 10.1002/14651858.CD013660.pub2
    BACKGROUND: Apnoea of prematurity (AoP) is defined as a pause in breathing for 20 seconds or longer, or for less than 20 seconds when accompanied by bradycardia and hypoxaemia, in a preterm infant. An association between the severity of apnoea and neurodevelopmental delay has been reported. Continuous positive airway pressure (CPAP) is a form of non-invasive ventilatory assistance that has been shown to be relatively safe and effective in preventing and treating respiratory distress among preterm infants. It is less clear whether CPAP treatment is safe and effective in the prevention and treatment of AoP.

    OBJECTIVES: 1. To assess the effects of CPAP on AoP in preterm infants (this may be compared to supportive care or mechanical ventilation). 2. To assess the effects of different CPAP delivery systems on AoP in preterm infants.

    SEARCH METHODS: Searches were conducted in September 2022 in the following databases: Cochrane Library, MEDLINE, Embase, and CINAHL. We also searched clinical trial registries and the reference lists of studies selected for inclusion.

    SELECTION CRITERIA: We included all randomised and quasi-randomised controlled trials (RCTs) in which researchers determined that CPAP was necessary for AoP in preterm infants (born before 37 weeks). Cross-over studies were also included, provided sufficient data were available for analysis.

    DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of risk of bias and extraction of data by at least two review authors. Discrepancies were resolved by involvement of a third author. We used the GRADE approach to assess the certainty of evidence for the following outcomes: 1) failed CPAP; 2) apnoea; 3) adverse effects of CPAP.

    MAIN RESULTS: We included four single-centre trials conducted in Malaysia, Spain, Germany, and North America, involving 138 infants with a mean/median gestation of 26 to 28 weeks. Two studies were parallel-group RCTs and two were cross-over trials. None of the studies compared CPAP with supportive care. All trials compared one form of CPAP with another. Two compared a variable flow device with ventilator CPAP, one compared two different variable flow devices, and one compared a variable flow device with bubble CPAP. Interventions were administered for periods ranging between six and 48 hours, with pressures between 4 and 6 cm H2O. We assessed all trials as having a high risk of bias for blinding of participants and personnel, and two studies for blinding of outcome assessors. We found a high risk of a carry-over effect in two studies where the washout period was not adequately described, and a high risk of bias in a study that appeared to use an analysis method not generally accepted for cross-over studies. Comparison 1. CPAP and supportive care compared to supportive care alone We did not identify any study for inclusion in this comparison. Comparison 2. CPAP delivered by different types of devices 2a. Variable flow compared to ventilator CPAP Two studies were included in this comparison. We are very uncertain whether there is any difference in the incidence of failed CPAP, defined as the need for mechanical ventilation (risk ratio (RR) 0.16, 95% confidence interval (CI) 0.01 to 2.90; 1 study, 26 participants; very low-certainty). We are very uncertain whether there is any difference in the frequency of apnoea events (mean difference (MD) per four-hour interval -0.10, 95% CI -1.30 to 1.10; 1 study, 26 participants; very low-certainty). We are uncertain whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. 2b. Variable flow compared to bubble CPAP We included one study in this comparison, but it did not report our pre-specified outcomes. 2c. Infant Flow variable flow CPAP compared to Medijet variable flow CPAP We are very uncertain whether there is any difference in the incidence of failed CPAP (RR 2.62, 95% CI 0.91 to 7.53; 1 study, 80 participants; very low-certainty). The frequency of apnoea was not reported, and we do not know whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. Comparison 3. CPAP compared to mechanical ventilation We did not identify any studies for inclusion in this comparison.

    AUTHORS' CONCLUSIONS: Due to the limited available evidence, we are very uncertain whether any CPAP device is more effective than other forms of supportive care, other CPAP devices, or mechanical ventilation for the prevention and treatment of AoP. The devices used in these studies included two types of variable flow CPAP device: bubble CPAP and ventilator CPAP. For each comparison, data were only available from a single study. There are theoretical reasons why these devices might have different effects on AoP, therefore further trials are indicated.

  4. Chuah SH, Tan LK, Md Sari NA, Chan BT, Hasikin K, Lim E, et al.
    J Magn Reson Imaging, 2023 Jul 15.
    PMID: 37452574 DOI: 10.1002/jmri.28915
    BACKGROUND: Increased afterload in aortic stenosis (AS) induces left ventricle (LV) remodeling to preserve a normal ejection fraction. This compensatory response can become maladaptive and manifest with motion abnormality. It is a clinical challenge to identify contractile and relaxation dysfunction during early subclinical stage to prevent irreversible deterioration.

    PURPOSE: To evaluate the changes of regional wall dynamics in 3D + time domain as remodeling progresses in AS.

    STUDY TYPE: Retrospective.

    POPULATION: A total of 31 AS patients with reduced and preserved ejection fraction (14 AS_rEF: 7 male, 66.5 [7.8] years old; 17 AS_pEF: 12 male, 67.0 [6.0] years old) and 15 healthy (6 male, 61.0 [7.0] years old).

    FIELD STRENGTH/SEQUENCE: 1.5 T Magnetic resonance imaging/steady state free precession and late-gadolinium enhancement sequences.

    ASSESSMENT: Individual LV models were reconstructed in 3D + time domain and motion metrics including wall thickening (TI), dyssynchrony index (DI), contraction rate (CR), and relaxation rate (RR) were automatically extracted and associated with the presence of scarring and remodeling.

    STATISTICAL TESTS: Shapiro-Wilk: data normality; Kruskal-Wallis: significant difference (P 

  5. Im SA, Gennari A, Park YH, Kim JH, Jiang ZF, Gupta S, et al.
    ESMO Open, 2023 Jun;8(3):101541.
    PMID: 37178669 DOI: 10.1016/j.esmoop.2023.101541
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, staging and treatment of patients with metastatic breast cancer (MBC) was published in 2021. A special, hybrid guidelines meeting was convened by ESMO and the Korean Society of Medical Oncology (KSMO) in collaboration with nine other Asian national oncology societies in May 2022 in order to adapt the ESMO 2021 guidelines to take into account the differences associated with the treatment of MBC in Asia. These guidelines represent the consensus opinions reached by a panel of Asian experts in the treatment of patients with MBC representing the oncological societies of China (CSCO), India (ISMPO), Indonesia (ISHMO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), the Philippines (PSMO), Singapore (SSO), Taiwan (TOS) and Thailand (TSCO). The voting was based on the best available scientific evidence and was independent of drug access or practice restrictions in the different Asian countries. The latter were discussed when appropriate. The aim of these guidelines is to provide guidance for the harmonisation of the management of patients with MBC across the different regions of Asia, drawing from data provided by global and Asian trials whilst at the same time integrating the differences in genetics, demographics and scientific evidence, together with restricted access to certain therapeutic strategies.
  6. Hemanath S, Robinson F, Pang NTP, Lim EK, Ong SJ, Alyssa S, et al.
    Med J Malaysia, 2023 May;78(3):336-343.
    PMID: 37271843
    INTRODUCTION: Effective smoking cessation programmes are essential for assisting smokers in quitting, indirectly lowering mortality and morbidity associated with smoking. Numerous studies have indicated positive outcomes when using mindfulness treatment (MT) to treat psychological or behavioural health issues. Although to date, no study has looked at the effectiveness of online MT for quitting smoking while addressing mental health, particularly among the Asian population. Therefore, this study compares the efficiency of online MT to traditional counselling therapy (CT) in aiding smoking cessation programmes while also addressing mental health.

    MATERIALS AND METHODS: A randomised control study with a two-group, single-blind design and baseline evaluation was selected. Social media sites were used to advertise for participants, who were then admitted after meeting the requirements. Participants who met the eligibility requirements were randomly split into two groups. Each group received a total of three sessions of online therapy (MT or CT), once every two weeks, as well as one phone call per week as reinforcement. At the beginning and end of the intervention, participants completed questionnaires (1st week and 5th week). Generalized Estimating Equation (GEE) statistical analysis was used to analyse all the variables.

    RESULTS: The MT group experienced a statistically significant decrease in cigarette consumption (β: -3.50, 95% Wald CI: - 4.62, -2.39) compared to the CT group over time. Furthermore, the MT group demonstrated significant improvements in their scores for the AAQ-2, anxiety, stress, depression and mindfulness compared to the CT group.

    CONCLUSION: Online MT is more successful at assisting smokers in lowering their daily cigarette intake and supporting their mental health during the smoking cessation process. Further longitudinal comparisons of the effectiveness of online MT should be undertaken using online platforms in future studies.

  7. Kanesvaran R, Castro E, Wong A, Fizazi K, Chua MLK, Zhu Y, et al.
    ESMO Open, 2022 Aug;7(4):100518.
    PMID: 35797737 DOI: 10.1016/j.esmoop.2022.100518
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of prostate cancer was published in 2020. It was therefore decided, by both the ESMO and the Singapore Society of Oncology (SSO), to convene a special, virtual guidelines meeting in November 2021 to adapt the ESMO 2020 guidelines to take into account the differences associated with the treatment of prostate cancer in Asia. These guidelines represent the consensus opinions reached by experts in the treatment of patients with prostate cancer representing the oncological societies of China (CSCO), India (ISMPO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), Singapore (SSO) and Taiwan (TOS). The voting was based on scientific evidence and was independent of the current treatment practices and drug access restrictions in the different Asian countries. The latter were discussed when appropriate. The aim is to provide guidance for the optimisation and harmonisation of the management of patients with prostate cancer across the different regions of Asia.
  8. Chong MY, Gu B, Armour CH, Dokos S, Ong ZC, Xu XY, et al.
    Biomech Model Mechanobiol, 2022 Feb;21(1):261-275.
    PMID: 35079931 DOI: 10.1007/s10237-021-01534-5
    False lumen thrombosis (FLT) in type B aortic dissection has been associated with the progression of dissection and treatment outcome. Existing computational models mostly assume rigid wall behavior which ignores the effect of flap motion on flow and thrombus formation within the FL. In this study, we have combined a fully coupled fluid-structure interaction (FSI) approach with a shear-driven thrombosis model described by a series of convection-diffusion reaction equations. The integrated FSI-thrombosis model has been applied to an idealized dissection geometry to investigate the interaction between vessel wall motion and growing thrombus. Our simulation results show that wall compliance and flap motion can influence the progression of FLT. The main difference between the rigid and FSI models is the continuous development of vortices near the tears caused by drastic flap motion up to 4.45 mm. Flap-induced high shear stress and shear rates around tears help to transport activated platelets further to the neighboring region, thus speeding up thrombus formation during the accelerated phase in the FSI models. Reducing flap mobility by increasing the Young's modulus of the flap slows down the thrombus growth. Compared to the rigid model, the predicted thrombus volume is 25% larger using the FSI-thrombosis model with a relatively mobile flap. Furthermore, our FSI-thrombosis model can capture the gradual effect of thrombus growth on the flow field, leading to flow obstruction in the FL, increased blood viscosity and reduced flap motion. This model is a step closer toward simulating realistic thrombus growth in aortic dissection, by taking into account the effect of intimal flap and vessel wall motion.
  9. Kanesvaran R, Porta C, Wong A, Powles T, Ng QS, Schmidinger M, et al.
    ESMO Open, 2021 Dec;6(6):100304.
    PMID: 34864348 DOI: 10.1016/j.esmoop.2021.100304
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of renal cell carcinoma was published in 2019 with an update planned for 2021. It was therefore decided by both the ESMO and the Singapore Society of Oncology (SSO) to convene a special, virtual guidelines meeting in May 2021 to adapt the ESMO 2019 guidelines to take into account the ethnic differences associated with the treatment of renal cell carcinomas in Asian patients. These guidelines represent the consensus opinions reached by experts in the treatment of patients with renal cell carcinoma representing the oncological societies of China (CSCO), India (ISMPO), Japan (JSMO), Korea (KSMO), Malaysia (MOS), Singapore (SSO) and Taiwan (TOS). The voting was based on scientific evidence and was independent of the current treatment practices and drug access restrictions in the different Asian countries. The latter were discussed when appropriate.
  10. Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, et al.
    Int J Numer Method Biomed Eng, 2021 08;37(8):e3501.
    PMID: 34057819 DOI: 10.1002/cnm.3501
    Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
  11. Tan WT, Liew YM, Mohamed Mokhtarudin MJ, Pirola S, Wan Ab Naim WN, Amry Hashim S, et al.
    J Biomech Eng, 2021 08 01;143(8).
    PMID: 33764388 DOI: 10.1115/1.4050642
    A computational approach is used to investigate potential risk factors for distal stent graft-induced new entry (dSINE) in aortic dissection (AD) patients. Patient-specific simulations were performed based on computed tomography images acquired from six AD patients (three dSINE and three non-dSINE) to analyze the correlation between anatomical characteristics and stress/strain distributions. Sensitivity analysis was carried out using idealized models to independently assess the effect of stent graft length, stent tortuosity and wedge apposition angle at the landing zone on key biomechanical variables. Mismatch of biomechanical properties between the stented and nonstented regions led to high stress at the distal stent graft-vessel interface in all patients, as well as shear strain in the neighboring region, which coincides with the location of tear formation. Stress was observed to increase with the increase of stent tortuosity (from 263 kPa at a tortuosity angle of 50 deg to 313 kPa at 30 deg). It was further amplified by stent graft landing at the inflection point of a curve. Malapposition of the stent graft led to an asymmetrical segment within the aorta, therefore changing the location and magnitude of the maximum von Mises stress substantially (up to +25.9% with a +25 deg change in the distal wedge apposition angle). In conclusion, stent tortuosity and wedge apposition angle serve as important risk predictors for dSINE formation in AD patients.
  12. Wan Ab Naim WN, Sun Z, Liew YM, Chan BT, Jansen S, Lei J, et al.
    Quant Imaging Med Surg, 2021 May;11(5):1723-1736.
    PMID: 33936960 DOI: 10.21037/qims-20-814
    Background: The study aims to analyze the correlation between the maximal diameter (both axial and orthogonal) and volume changes in the true (TL) and false lumens (FL) after stent-grafting for Stanford type B aortic dissection.

    Method: Computed tomography angiography was performed on 13 type B aortic dissection patients before and after procedure, and at 6 and 12 months follow-up. The lumens were divided into three regions: the stented area (Region 1), distal to the stent graft to the celiac artery (Region 2), and between the celiac artery and the iliac bifurcation (Region 3). Changes in aortic morphology were quantified by the increase or decrease of diametric and volumetric percentages from baseline measurements.

    Results: At Region 1, the TL diameter and volume increased (pre-treatment: volume =51.4±41.9 mL, maximal axial diameter =22.4±6.8 mm, maximal orthogonal diameter =21.6±7.2 mm; follow-up: volume =130.7±69.2 mL, maximal axial diameter =40.1±8.1 mm, maximal orthogonal diameter =31.9+2.6 mm, P<0.05 for all comparisons), while FL decreased (pre-treatment: volume =129.6±150.5 mL; maximal axial diameter =43.0±15.8 mm; maximal orthogonal diameter =28.3±12.6 mm; follow-up: volume =66.6±95.0 mL, maximal axial diameter =24.5±19.9 mm, maximal orthogonal diameter =16.9±13.7, P<0.05 for all comparisons). Due to the uniformity in size throughout the vessel, high concordance was observed between diametric and volumetric measurements in the stented region with 93% and 92% between maximal axial diameter and volume for the true/false lumens, and 90% and 92% between maximal orthogonal diameter and volume for the true/false lumens. Large discrepancies were observed between the different measurement methods at regions distal to the stent graft, with up to 46% differences between maximal orthogonal diameter and volume.

    Conclusions: Volume measurement was shown to be a much more sensitive indicator in identifying lumen expansion/shrinkage at the distal stented region.

  13. Koh N, Ference BA, Nicholls SJ, Navar AM, Chew DP, Kostner K, et al.
    Eur Cardiol, 2021 Feb;16:e54.
    PMID: 35024056 DOI: 10.15420/ecr.2021.36
    The prevalence of dyslipidaemia has been increasing in the Asia-Pacific region and this is attributed to dietary changes and decreasing physical activity. While there has been substantial progress in dyslipidaemia therapy, its management in the region is hindered by limitations in awareness, adherence and healthcare costs. The Asian Pacific Society of Cardiology (APSC) developed these consensus recommendations to address the need for a unified approach to managing dyslipidaemia. These recommendations are intended to guide general cardiologists and internists in the assessment and treatment of dyslipidaemia and are hoped to pave the way for improving screening, early diagnosis and treatment. The APSC expert panel reviewed and appraised the evidence using the Grading of Recommendations Assessment, Development, and Evaluation system. Consensus recommendations were developed, which were then put to an online vote. The resulting consensus recommendations tackle contemporary issues in the management of dyslipidaemia, familial hypercholesterolaemia and lipoprotein(a) in the Asia-Pacific region.
  14. Wan Ab Naim WN, Mohamed Mokhtarudin MJ, Chan BT, Lim E, Ahmad Bakir A, Nik Mohamed NA
    J Theor Biol, 2021 01 21;509:110527.
    PMID: 33096094 DOI: 10.1016/j.jtbi.2020.110527
    Reperfusion of the blood flow to ischemic myocardium is the standard treatment for patients suffering myocardial infarction. However, the reperfusion itself can also induce myocardial injury, in which the actual mechanism and its risk factors remain unclear. This work aims to study the mechanism of ischemia-reperfusion treatment using a three-dimensional (3D) oxygen diffusion model. An electrical model is then coupled to an oxygen model to identify the possible region of myocardial damage. Our findings show that the value of oxygen exceeds its optimum (>1.0) at the ischemic area during early reperfusion period. This complication was exacerbated in a longer ischemic period. While a longer reperfusion time causes a continuous excessive oxygen supply to the ischemic area throughout the reperfusion time. This work also suggests the use of less than 0.8 of initial oxygen concentration in the reperfusion treatment to prevent undesired upsurge at the early reperfusion period and further myocardial injury. We also found the region at risk for myocardial injury is confined in the ischemic vicinity revealed by its electrical conductivity impairment. Although there is a risk that reperfusion leads to myocardial injury for excessive oxygen accumulation, the reperfusion treatment is helpful in reducing the infarct size.
  15. Chong MY, Gu B, Chan BT, Ong ZC, Xu XY, Lim E
    Int J Numer Method Biomed Eng, 2020 12;36(12):e3399.
    PMID: 32862487 DOI: 10.1002/cnm.3399
    A monolithic, fully coupled fluid-structure interaction (FSI) computational framework was developed to account for dissection flap motion in acute type B aortic dissection (TBAD). Analysis of results included wall deformation, pressure, flow, wall shear stress (WSS), von Mises stress and comparison of hemodynamics between rigid wall and FSI models. Our FSI model mimicked realistic wall deformation that resulted in maximum compression of the distal true lumen (TL) by 21.4%. The substantial movement of intimal flap mostly affected flow conditions in the false lumen (FL). Flap motion facilitated more flow entering the FL at peak systole, with the TL to FL flow split changing from 88:12 in the rigid model to 83:17 in the FSI model. There was more disturbed flow in the FL during systole (5.8% FSI vs 5.2% rigid) and diastole (13.5% FSI vs 9.8% rigid), via a λ2 -criterion. The flap-induced disturbed flow near the tears in the FSI model caused an increase of local WSS by up to 70.0% during diastole. This resulted in a significant reduction in the size of low time-averaged WSS (TAWSS) regions in the FL (113.11 cm2 FSI vs 177.44 cm2 rigid). Moreover, the FSI model predicted lower systolic pressure, higher diastolic pressure, and hence lower pulse pressure. Our results provided new insights into the possible impact of flap motion on flow in aortic dissections, which are particularly important when evaluating hemodynamics of acute TBAD. NOVELTY STATEMENT: Our monolithic fully coupled FSI computational framework is able to reproduce experimentally measured range of flap deformation in aortic dissection, thereby providing novel insights into the influence of physiological flap motion on the flow and pressure distributions. The drastic flap movement increases the flow resistance in the true lumen and causes more disturbed flow in the false lumen, as visualized through the λ2 criterion. The flap-induced luminal pressure is dampened, thereby affecting pressure measures, which may serve as potential prognostic indicators for late complications in acute uncomplicated TBAD patients.
  16. Goh CH, Tan LK, Lovell NH, Ng SC, Tan MP, Lim E
    Comput Methods Programs Biomed, 2020 Nov;196:105596.
    PMID: 32580054 DOI: 10.1016/j.cmpb.2020.105596
    BACKGROUND AND OBJECTIVES: Continuous monitoring of physiological parameters such as photoplethysmography (PPG) has attracted increased interest due to advances in wearable sensors. However, PPG recordings are susceptible to various artifacts, and thus reducing the reliability of PPG-driven parameters, such as oxygen saturation, heart rate, blood pressure and respiration. This paper proposes a one-dimensional convolution neural network (1-D-CNN) to classify five-second PPG segments into clean or artifact-affected segments, avoiding data-dependent pulse segmentation techniques and heavy manual feature engineering.

    METHODS: Continuous raw PPG waveforms were blindly allocated into segments with an equal length (5s) without leveraging any pulse location information and were normalized with Z-score normalization methods. A 1-D-CNN was designed to automatically learn the intrinsic features of the PPG waveform, and perform the required classification. Several training hyperparameters (initial learning rate and gradient threshold) were varied to investigate the effect of these parameters on the performance of the network. Subsequently, this proposed network was trained and validated with 30 subjects, and then tested with eight subjects, with our local dataset. Moreover, two independent datasets downloaded from the PhysioNet MIMIC II database were used to evaluate the robustness of the proposed network.

    RESULTS: A 13 layer 1-D-CNN model was designed. Within our local study dataset evaluation, the proposed network achieved a testing accuracy of 94.9%. The classification accuracy of two independent datasets also achieved satisfactory accuracy of 93.8% and 86.7% respectively. Our model achieved a comparable performance with most reported works, with the potential to show good generalization as the proposed network was evaluated with multiple cohorts (overall accuracy of 94.5%).

    CONCLUSION: This paper demonstrated the feasibility and effectiveness of applying blind signal processing and deep learning techniques to PPG motion artifact detection, whereby manual feature thresholding was avoided and yet a high generalization ability was achieved.

  17. Wan Ab Naim WN, Mokhtarudin MJM, Lim E, Chan BT, Ahmad Bakir A, Nik Mohamed NA
    Int J Numer Method Biomed Eng, 2020 11;36(11):e3398.
    PMID: 32857480 DOI: 10.1002/cnm.3398
    Myocardial infarction (MI) is the most common cause of a heart failure, which occurs due to myocardial ischemia leading to left ventricular (LV) remodeling. LV remodeling particularly occurs at the ischemic area and the region surrounds it, known as the border zone. The role of the border zone in initiating LV remodeling process urges the investigation on the correlation between early border zone changes and remodeling outcome. Thus, this study aims to simulate a preliminary conceptual work of the border zone formation and evolution during onset of MI and its effect towards early LV remodeling processes by incorporating the oxygen concentration effect on the electrophysiology of an idealized three-dimensional LV through electro-chemical coupled mathematical model. The simulation result shows that the region of border zone, represented by the distribution of electrical conductivities, keeps expanding over time. Based on this result, the border zone is also proposed to consist of three sub-regions, namely mildly, moderately, and seriously impaired conductivity regions, which each region categorized depending on its electrical conductivities. This division could be used as a biomarker for classification of reversible and irreversible myocardial injury and will help to identify the different risks for the survival of patient. Larger ischemic size and complete occlusion of the coronary artery can be associated with an increased risk of developing irreversible injury, in particular if the reperfusion treatment is delayed. Increased irreversible injury area can be related with cardiovascular events and will further deteriorate the LV function over time.
  18. Chuah SH, Md Sari NA, Chew BT, Tan LK, Chiam YK, Chan BT, et al.
    Phys Med, 2020 Oct;78:137-149.
    PMID: 33007738 DOI: 10.1016/j.ejmp.2020.08.022
    Differential diagnosis of hypertensive heart disease (HHD) and hypertrophic cardiomyopathy (HCM) is clinically challenging but important for treatment management. This study aims to phenotype HHD and HCM in 3D + time domain by using a multiparametric motion-corrected personalized modeling algorithm and cardiac magnetic resonance (CMR). 44 CMR data, including 12 healthy, 16 HHD and 16 HCM cases, were examined. Multiple CMR phenotype data consisting of geometric and dynamic variables were extracted globally and regionally from the models over a full cardiac cycle for comparison against healthy models and clinical reports. Statistical classifications were used to identify the distinctive characteristics and disease subtypes with overlapping functional data, providing insights into the challenges for differential diagnosis of both types of disease. While HCM is characterized by localized extreme hypertrophy of the LV, wall thickening/contraction/strain was found to be normal and in sync, though it was occasionally exaggerated at normotrophic/less severely hypertrophic regions during systole to preserve the overall ejection fraction (EF) and systolic functionality. Additionally, we observed that hypertrophy in HHD could also be localized, although at less extreme conditions (i.e. more concentric). While fibrosis occurs mostly in those HCM cases with aortic obstruction, only minority of HHD patients were found affected by fibrosis. We demonstrate that subgroups of HHD (i.e. preserved and reduced EF: HHDpEF & HHDrEF) have different 3D + time CMR characteristics. While HHDpEF has cardiac functions in normal range, dilation and heart failure are indicated in HHDrEF as reflected by low LV wall thickening/contraction/strain and synchrony, as well as much reduced EF.
  19. Lim E, Lan BL, Ooi EH, Low HL
    Sci Rep, 2020 08 12;10(1):13626.
    PMID: 32788610 DOI: 10.1038/s41598-020-70614-w
    This study investigates the effects of aircraft cabin pressure on intracranial pressure (ICP) elevation of a pneumocephalus patient. We propose an experimental setup that simulates the intracranial hydrodynamics of a pneumocephalus patient during flight. It consists of an acrylic box (skull), air-filled balloon [intracranial air (ICA)], water-filled balloon (cerebrospinal fluid and blood) and agarose gel (brain). The cabin was replicated using a custom-made pressure chamber. The setup can measure the rise in ICP during depressurization to levels similar to that inside the cabin at cruising altitude. ΔICP, i.e. the difference between mean cruising ICP and initial ICP, was found to increase with ICA volume and ROC. However, ΔICP was independent of the initial ICP. The largest ΔICP was 5 mmHg; obtained when ICA volume and ROC were 20 ml and 1,600 ft/min, respectively. The postulated ICA expansion and the subsequent increase in ICP in pneumocephalus patients during flight were successfully quantified in a laboratory setting. Based on the quantitative and qualitative analyses of the results, an ICA volume of 20 ml and initial ICP of 15 mmHg were recommended as conservative thresholds that are required for safe air travel among pneumocephalus patients. This study provides laboratory data that may be used by doctors to advise post-neurosurgical patients if they can safely fly.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links