Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, et al.
    Acta Trop, 2021 Jul;219:105923.
    PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923
    Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
  2. Chua HS, Soh YH, Loong SK, AbuBakar S
    Ann Clin Microbiol Antimicrob, 2021 Oct 03;20(1):72.
    PMID: 34602092 DOI: 10.1186/s12941-021-00475-2
    BACKGROUND: Francisella philomiragia is a very rare opportunistic pathogen of humans which causes protean diseases such as pneumonia and other systemic infections. Subsequent failure of prompt treatment may result in poor prognosis with mortality among infected patients.

    CASE PRESENTATION: The present report describes a case of F. philomiragia bacteraemia first reported in Malaysia and Asian in a 60-year-old patient with underlying end-stage renal disease (ESRF) and diabetes mellitus. He presented with Acute Pulmonary Oedema with Non-ST-Elevation Myocardial Infarction (NSTEMI) in our hospital. He was intubated in view of persistent type I respiratory failure and persistent desaturation despite post haemodialysis. Blood investigation indicated the presence of ongoing infection and inflammation. The aerobic blood culture growth of F. philomiragia was identified using the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (Score value: 2.16) and confirmed by 16S Ribosomal DNA (16S rDNA) sequencing. He was discharged well on day 26 of admission, after completing one week of piperacillin/tazobactam and two weeks of doxycycline.

    CONCLUSION: Clinical suspicion should be raised if patients with known risk factors are presenting with pneumonia or pulmonary nodules especially as these are the most common manifestations of F. philomiragia infection. Early diagnosis via accurate laboratory identification of the organism through MALDI-TOF mass spectrometry and molecular technique such as 16S rDNA sequencing are vital for prompt treatment that results in better outcomes for the afflicted patients.

  3. Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, et al.
    BMC Infect Dis, 2020 Dec 11;20(1):947.
    PMID: 33308203 DOI: 10.1186/s12879-020-05585-4
    BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

    METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

    RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P 

  4. Johari J, Hontz RD, Pike BL, Husain T, Chong CK, Rusli N, et al.
    BMJ Open, 2021 08 26;11(8):e050901.
    PMID: 34446498 DOI: 10.1136/bmjopen-2021-050901
    INTRODUCTION: Middle East respiratory syndrome (MERS) is a viral respiratory infection caused by the MERS-CoV. MERS was first reported in the Kingdom of Saudi Arabia in 2012. Every year, the Hajj pilgrimage to Mecca attracts more than two million pilgrims from 184 countries, making it one of the largest annual religious mass gatherings (MGs) worldwide. MGs in confined areas with a high number of pilgrims' movements worldwide continues to elicit significant global public health concerns. MERCURIAL was designed by adopting a seroconversion surveillance approach to provide multiyear evidence of MG-associated MERS-CoV seroconversion among the Malaysian Hajj pilgrims.

    METHODS AND ANALYSIS: MERCURIAL is an ongoing multiyear prospective cohort study. Every year, for the next 5 years, a cohort of 1000 Hajj pilgrims was enrolled beginning in the 2016 Hajj pilgrimage season. Pre-Hajj and post-Hajj serum samples were obtained and serologically analysed for evidence of MERS-CoV seroconversion. Sociodemographic data, underlying medical conditions, symptoms experienced during Hajj pilgrimage, and exposure to camel and untreated camel products were recorded using structured pre-Hajj and post-Hajj questionnaires. The possible risk factors associated with the seroconversion data were analysed using univariate and multivariate logistic regression. The primary outcome of this study is to better enhance our understanding of the potential threat of MERS-CoV spreading through MG beyond the Middle East.

    ETHICS AND DISSEMINATION: This study has obtained ethical approval from the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia. Results from the study will be submitted for publication in peer-reviewed journals and presented in conferences and scientific meetings.

    TRIAL REGISTRATION NUMBER: NMRR-15-1640-25391.

  5. Loong SK, Teoh BT, Johari J, Khor CS, Abd-Jamil J, Nor'e SS, et al.
    Case Rep Infect Dis, 2017;2017:2578082.
    PMID: 28331641 DOI: 10.1155/2017/2578082
    Bacillus anthracis is a bacterial pathogen of major concern. The spores of this bacteria can survive harsh environmental conditions for extended periods and are well recognized as a potential bioterror weapon with significant implications. Accurate and timely identification of this Bacillus species in the diagnostic laboratory is essential for disease and public health management. Biosafety Level 3 measures and ciprofloxacin treatment were instituted when B. anthracis was suspected from a patient with gangrenous foot. 16S rDNA sequencing was performed to accurately identify the suspected bacterium, due to the superiority of this method to accurately identify clinically isolated bacteria. B. megaterium was identified as the causative agent and the organism was subsequently treated as a Biosafety Level 2 pathogen.
  6. Loong SK, Tan KK, Zulkifle NI, AbuBakar S
    Data Brief, 2019 Aug;25:104159.
    PMID: 31312701 DOI: 10.1016/j.dib.2019.104159
    Paraburkholderia fungorum is an opportunistic bacteria infrequently associated with human infections. Here, we report the draft genome sequence of P. fungorum strain BF370, recovered from the synovial tissue of a patient in Malaysia. The P. fungorum genome contains a 8,950,957 bp chromosome with a G+C content of 61.8%. Colicin and heavy metal resistant genes were also present in the genome. Conserved sequence indels unique to P. fungorum were observed in the genome. The draft genome was deposited at the European Nucleotide Archive under the sample accession number ERS1776561 and study accession number PRJEB17921.
  7. Chiam CW, Chan YF, Loong SK, Yong SS, Hooi PS, Sam IC
    Diagn Microbiol Infect Dis, 2013 Oct;77(2):133-7.
    PMID: 23886793 DOI: 10.1016/j.diagmicrobio.2013.06.018
    Quantitative real-time polymerase chain reaction (qRT-PCR) is useful for diagnosis and studying virus replication. We developed positive- and negative-strand qRT-PCR assays to detect nsP3 of chikungunya virus (CHIKV), a positive-strand RNA alphavirus that causes epidemic fever, rash, and arthritis. The positive- and negative-strand qRT-PCR assays had limits of quantification of 1 and 3 log10 RNA copies/reaction, respectively. Compared to a published E1 diagnostic assay using 30 laboratory-confirmed clinical samples, the positive-strand nsP3 qRT-PCR assay had higher R(2) and efficiency and detected more positive samples. Peak viral load of 12.9 log(10) RNA copies/mL was reached on day 2 of illness, and RNA was detectable up to day 9, even in the presence of anti-CHIKV IgM. There was no correlation between viral load and persistent arthralgia. The positive-strand nsP3 assay is suitable for diagnosis, while the negative-strand nsP3 assay, which uses tagged primers to increase specificity, is useful for study of active viral replication kinetics.
  8. Sam IC, Kahar-Bador M, Chan YF, Loong SK, Mohd Nor Ghazali F
    Diagn Microbiol Infect Dis, 2008 Dec;62(4):437-9.
    PMID: 18842374 DOI: 10.1016/j.diagmicrobio.2008.07.016
    The 1st 9 clinical isolates of multisensitive community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) from Malaysia carry SCCmec type IV and predominantly cause skin and soft-tissue infections. Seven were classified as nosocomially acquired. There was considerable clonal diversity, with both pandemic and novel multilocus sequence types detected. CA-MRSA rates appear to be increasing in our hospital, warranting close surveillance.
  9. Loong SK, Soh YH, Mahfodz NH, Johari J, AbuBakar S
    Emerg Infect Dis, 2016 10;22(10):1834-5.
    PMID: 27648477 DOI: 10.3201/eid2210.151114
  10. Johari J, Hontz RD, Pike BL, Husain T, Rusli N, Mohd-Zain R, et al.
    Emerg Microbes Infect, 2023 Dec;12(1):2208678.
    PMID: 37101375 DOI: 10.1080/22221751.2023.2208678
    Prospective cohort study to investigate the potential exposure to the Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) following Hajj pilgrims is still very limited. Here, we report the antibody seroconversion study results obtained from successive three years cohort studies (2016-2018) involving the Malaysian Hajj pilgrims returning from the Middle East. A cohort study of Hajj pilgrims from Malaysia enrolled 2,863 participants from 2016-2018, all of whom consented to provide paired blood samples for both pre- and post-Hajj travel to the Middle East. ELISAs and micro-neutralization assays were performed to detect the presence of MERS-CoV IgG antibodies. Sociodemographic data, symptoms experienced during Hajj, and history of exposure to camels or camel products were recorded using structured pre- and post-Hajj questionnaires. A 4-fold increase in anti-MERS-CoV IgG between paired pre-Hajj and post-Hajj serum samples in twelve participants was observed. None of the twelve ELISA-positive sera had detectable levels of virus-neutralizing antibodies. All reportedly had mild symptoms of respiratory symptoms at a certain point during the pilgrimage, implying mild or asymptomatic infections. No association between post-Hajj serum positivity and a history of exposure to camels or camel products was obtained. Findings from the study suggest that serologic conversion to MERS-CoV occurred in at least 0.6% of the Hajj pilgrims returning from the Middle East. Since all the seroconvertants had mild to no symptoms during the sampling period, it highlights the likelihood of occurrence of only low infectivity spillover infections among the Hajj pilgrims.
  11. Loong SK, Tan KK, Sulaiman S, Wong PF, AbuBakar S
    Genom Data, 2017 Jun;12:69-70.
    PMID: 28377885 DOI: 10.1016/j.gdata.2017.03.004
    In this study, we present the draft genome sequence of B. pseudohinzii BH370 recovered from the trachea and lung tissues of an ICR mouse in Malaysia. The genome consists of 4,474,040 bp with a GC content of 66.4%. Annotation using RAST algorithm displayed 5119 protein encoding and 52 RNA genes. The CRISPR-cas genomic sequences previously reported in B. pseudohinzii were identified. The nucleotide sequences of BH370 was deposited into the European Nucleotide Archive under the genome assembly accession number FPJN01000000.
  12. Nellis S, Loong SK, Abd-Jamil J, Fauzi R, AbuBakar S
    Geospat Health, 2021 11 03;16(2).
    PMID: 34730321 DOI: 10.4081/gh.2021.1008
    Dengue is a complex disease with an increasing number of infections worldwide. This study aimed to analyse spatiotemporal dengue outbreaks using geospatial techniques and examine the effects of the weather on dengue outbreaks in the Klang Valley area, Kuala Lumpur, Malaysia. Daily weather variables including rainfall, temperature (maximum and minimum) and wind speed were acquired together with the daily reported dengue cases data from 2001 to 2011 and converted into geospatial format to identify whether there was a specific pattern of the dengue outbreaks. The association between these variables and dengue outbreaks was assessed using Spearman's correlation. The result showed that dengue outbreaks consistently occurred in the study area during a 11-year study period. And that the strongest outbreaks frequently occurred in two high-rise apartment buildings located in Kuala Lumpur City centre. The results also show significant negative correlations between maximum temperature and minimum temperature on dengue outbreaks around the study area as well as in the area of the high-rise apartment buildings in Kuala Lumpur City centre.
  13. Peng TL, Kamar AH, Mohamed M, Gilbert B, Mohd Sani NI, C W Zalati CWS, et al.
    Heliyon, 2024 May 15;10(9):e29785.
    PMID: 38699006 DOI: 10.1016/j.heliyon.2024.e29785
    Bats are a significant reservoir for numerous pathogens, including Bartonella spp. It is one of the emerging zoonotic bacterial diseases that can be transmitted to humans and may cause various unspecific clinical manifestations. Thus, bartonellosis is rarely diagnosed and is regarded as a neglected vector-borne disease (VBD). Bat flies have been hypothesised to be a vector in the transmission of pathogens among bats. They are host-specific, which reduces the likelihood of pathogen transmission across bat species; however, they are likely to maintain high pathogen loads within their host species. To explore the presence of Bartonella spp. in bat flies from Peninsular Malaysia; bat fly samples collected from various sites at the east coast states were subjected to molecular detection for Bartonella spp. It was discovered that 38.7 % of bats from Terengganu and Kelantan were infested with bat flies; however, no bat fly was found in bats collected from Pahang. The collected bat flies belonged to the families Nycteribiidae (79.6 %) and Streblidae (20.4 %). The collected bat flies were pooled according to the locations and species into 39 pools. Out of these 39 pools, 66.7 % (n = 26) were positive for Bartonella spp. by PCR. Sequence analyses of five randomly selected PCR-positive pools revealed that pools from Kelantan (n = 3) have the closest sequence identities (99 %) to Bartonella spp. strain Lisso-Nig-922 from Nigeria. However, the other pools from Terengganu (n = 2) were closely related to Bartonella spp. strain KP277 from Thailand and Bartonella spp. strain Rhin-3 from the Republic of Georgia with 99 % and 100 % sequence identity, respectively. This suggests that the Bartonella spp. found in Malaysian bat flies are genetically diverse and can potentially serve as reservoirs for pathogenic Bartonella spp.
  14. Loong SK, Khor CS, Jafar FL, AbuBakar S
    J Clin Lab Anal, 2016 Nov;30(6):1056-1060.
    PMID: 27184222 DOI: 10.1002/jcla.21980
    BACKGROUND: Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification.

    METHODS: One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method.

    RESULTS: Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates.

    CONCLUSION: The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools.

  15. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, Hooi PS, et al.
    J Clin Virol, 2009 Oct;46(2):180-3.
    PMID: 19683467 DOI: 10.1016/j.jcv.2009.07.016
    BACKGROUND: Chikungunya virus (CHIKV) of the Central/East African genotype has caused large outbreaks worldwide in recent years. In Malaysia, limited CHIKV outbreaks of the endemic Asian and imported Central/East African genotypes were reported in 1998 and 2006. Since April 2008, an unprecedented nationwide outbreak has affected Malaysia.
    OBJECTIVE: To study the molecular epidemiology of the current Malaysian CHIKV outbreak, and to evaluate cross-neutralisation activity of serum from infected patients against isolates of Asian and Central/East African genotypes.
    STUDY DESIGN: Serum samples were collected from 83 patients presenting in 2008, and tested with PCR for the E1 gene, virus isolation, and for IgM. Phylogenetic analysis was performed on partial E1 gene sequences of 837bp length. Convalescent serum from the current outbreak and Bagan Panchor outbreak (Asian genotype, 2006) were tested for cross-neutralising activity against representative strains from each outbreak.
    RESULTS: CHIKV was confirmed in 34 patients (41.0%). The current outbreak strain has the A226V mutation in the E1 structural protein, and grouped with Central/East African isolates from recent global outbreaks. Serum cross-neutralisation activity against both Central/East African and Asian genotypes was observed at titres from 40 to 1280.
    CONCLUSIONS: The CHIKV strain causing the largest Malaysian outbreak is of the Central/East African genotype. The presence of the A226V mutation, which enhances transmissibility of CHIKV by Aedes albopictus, may explain the extensive spread especially in rural areas. Serum cross-neutralisation of different genotypes may aid potential vaccines and limit the effect of future outbreaks.
  16. Khor CS, Hassan H, Mohd-Rahim NF, Chandren JR, Nore SS, Johari J, et al.
    J Infect Dev Ctries, 2019 05 31;13(5):449-454.
    PMID: 32053515 DOI: 10.3855/jidc.11001
    INTRODUCTION: Lyme disease has been well-described in the North America and European countries. However, information is still very limited in the developing countries including Malaysia. The Orang Asli (OA), the indigenous people of Peninsular Malaysia reside mostly in the forest and forest fringe areas abundant with the vector for Lyme disease. Here, we described the seroprevalence of Borellia burgdorferi (B. burgdorferi) among the OA and demographic variables that could be associated with seroprevalence.

    METHODOLOGY: A total of 16 OA villages distributed across 8 states in Peninsular Malaysia participated in this study. Sera obtained from 904 OA volunteers were screened for anti-B. burgdorferi IgG antibodies. ELISA results obtained and demographic information collected were analysed to identify possible variables associated with seroprevalence.

    RESULTS: A total of 73 (8.1%) OA tested positive for anti-B. burgdorferi IgG antibodies. Among all the variables examined, village of residence (p = 0.045) was the only significant predictor for seropositivity. High (> 10.0%) prevalence was associated with three OA villages. Those living in one particular village were 1.65 times more likely to be seropositive as compared to other OA villages. Age, gender, marital status, household size, level of education, monthly household income and occupation were not significant predictors for seropositivity.

    CONCLUSION: Results of the present study support earlier findings that B. burgdorferi infection among Malaysians is currently under-recognized. Further studies will be needed at these locations to confirm the presence of Lyme disease among these populations.

  17. Khoo JJ, Ishak SN, Lim FS, Mohd-Taib FS, Khor CS, Loong SK, et al.
    J Med Entomol, 2018 10 25;55(6):1642-1647.
    PMID: 30137379 DOI: 10.1093/jme/tjy122
    The Borrelia genus consists of spirochete bacteria known to cause Lyme disease (LD) and relapsing fever in humans. Borrelia pathogens are commonly transmitted via arthropod vectors such as ticks, mites, or lice. Here, we report the molecular screening of LD group Borrelia sp. from ticks (Acari: Ixodidae) collected from rodents trapped in recreational forests and a semiurban residential area in the Selangor state in Malaysia. Of 156 adult ticks surveyed, 72 ticks were determined as positive for Borrelia sp. by polymerase chain reaction (PCR). All Borrelia PCR-positive ticks belonged to the Ixodes granulatus Supino species. Borrelia sp. was not detected in other tick species examined, including Dermacentor sp. and Amblyomma sp. ticks. Thirteen Borrelia PCR-positive tick samples were selected for further sequence analyses. Phylogenetic analyses of partial flaB gene sequences revealed that the Borrelia sp. were closely related to the LD group borreliae, Borrelia yangtzensis; a novel Borrelia genospecies reported in East Asian countries including Japan, Taiwan, and China. To our knowledge, this is the first report of Borrelia sp. related to Borrelia yangtzensis detected in Malaysia and Southeast Asia. The zoonotic potential of the Borrelia sp. reported here merits further investigation, as it may explain the previously reported serological evidence for borrelial infections in Malaysia.
  18. Loong SK, Tan KK, Zainal N, Phoon WH, Zain SNM, AbuBakar S
    Mem Inst Oswaldo Cruz, 2017 Dec;112(12):857-859.
    PMID: 29211248 DOI: 10.1590/0074-02760170132
    Kocuria marina has recently emerged as a cause for catheter-related bloodstream infections in patients with underlying health complications. One K. marina strain was recently isolated from the lung tissues of a wild urban rat (Rattus rattus diardii) caught during rodent surveillance. Here, we present the draft genome of the first K. marina animal isolate, K. marina TRE150902.
  19. Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, et al.
    Microb Genom, 2023 Jul;9(7).
    PMID: 37399133 DOI: 10.1099/mgen.0.001045
    While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis) and dog (Ctenocephalides canis) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis-derived pathogens ( Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (wCori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (wCfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides-associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
  20. Ain-Najwa MY, Yasmin AR, Omar AR, Arshad SS, Abu J, Mohammed HO, et al.
    One Health, 2020 Dec;10:100134.
    PMID: 32405525 DOI: 10.1016/j.onehlt.2020.100134
    West Nile virus (WNV) is a zoonotic mosquito-borne flavivirus that is harbored and amplified by wild birds via the enzootic transmission cycle. Wide range of hosts are found to be susceptible to WNV infection including mammals, amphibians and reptiles across the world. Several studies have demonstrated that WNV was present in the Malaysian Orang Asli and captive birds. However, no data are available on the WNV prevalence in wild birds found in Malaysia. Therefore this study was conducted to determine the serological and molecular prevalence of WNV in wild birds in selected areas in the West Coast of Peninsular Malaysia. Two types of wild birds were screened, namely migratory and resident birds in order to explore any possibility of WNV transmission from the migratory birds to the resident birds. Thus, a cross-sectional study was conducted at the migratory birds sanctuary located in Kuala Gula, Perak and Kapar, Selangor by catching 163 migratory birds, and 97 resident birds from Kuala Gula and Parit Buntar, Perak at different time between 2016 and 2017 (Total, n = 260). Blood and oropharyngeal swabs were collected for serological and molecular analysis, respectively. Serum were screened for WNV antibodies using a commercial competitive ELISA (c-ELISA) (ID Screen® West Nile Competition Multi-species ELISA, ID VET, Montpellier, France) and cross-reactivity towards Japanese Encephalitis virus (JEV) was also carried out using the JEV-double antigen sandwich (DAS) ELISA. Oropharyngeal swabs were subjected to one-step RT-PCR to detect WNV RNA, in which positive reactions were subsequently sequenced. WNV seropositive rate of 18.71% (29/155) at 95% CI (0.131 to 0.260) and molecular prevalence of 15.2% (16/105) at 95% CI (0.092 to 0.239) were demonstrated in migratory and resident wild birds found in West Coast Malaysia. Phylogenetic analyses of the 16 WNV isolates found in this study revealed that the local strains have 99% similarity to the strains from South Africa and were clustered under lineage 2. Evidence of WNV infection in resident and migratory birds were demonstrated in this study. As a summary, intervention between migratory birds, resident birds and mosquitoes might cause the introduction and maintenance of WNV in Malaysia, however the assumption could be further proven by studying the infection dynamics in the mosquitoes present in the studied areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links