Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. A Karim SS, Takamura Y, Tue PT, Tung NT, Kazmi J, Dee CF, et al.
    Materials (Basel), 2020 Mar 04;13(5).
    PMID: 32143385 DOI: 10.3390/ma13051136
    Highly ordered vertically grown zinc oxide nanorods (ZnO NRs) were synthesized on ZnO-coated SiO2/Si substrate using zinc acetylacetonate hydrate as a precursor via a simple hydrothermal method at 85 °C. We used 0.05 M of ZnO solution to facilitate the growth of ZnO NRs and the immersion time was varied from 0.5 to 4 h. The atomic force microscopy revealed the surface roughness of ZnO seed layer used to grow the ZnO NRs. The morphology of vertically grown ZnO NRs was observed by field emission scanning electron microscopy. X-ray diffraction examination and transmission electron microscopy confirmed that the structure of highly ordered ZnO NRs was crystalline with a strong (002) peak corresponded to ZnO hexagonal wurtzite structure. The growth of highly ordered ZnO NRs was favorable due to the continuous supply of Zn2+ ions and chelating agents properties obtained from the acetylacetonate-derived precursor during the synthesis. Two-point probe current-voltage measurement and UV-vis spectroscopy of the ZnO NRs indicated a resistivity and optical bandgap value of 0.44 Ω.cm and 3.35 eV, respectively. The photoluminescence spectrum showed a broad peak centered at 623 nm in the visible region corresponded to the oxygen vacancies from the ZnO NRs. This study demonstrates that acetylacetonate-derived precursors can be used for the production of ZnO NRs-based devices with a potential application in biosensors.
  2. Abu Bakar S, Jusoh N, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(46):65171-65187.
    PMID: 34231144 DOI: 10.1007/s11356-021-14918-y
    In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal.
  3. Auliya RZ, Ooi PC, Sadri R, Talik NA, Yau ZY, Mohammad Haniff MAS, et al.
    Sci Rep, 2021 Aug 31;11(1):17432.
    PMID: 34465806 DOI: 10.1038/s41598-021-96909-0
    A new 2D titanium carbide (Ti3C2), a low dimensional material of the MXene family has attracted remarkable interest in several electronic applications, but its unique structure and novel properties are still less explored in piezoelectric energy harvesters. Herein, a systematic study has been conducted to examine the role of Ti3C2 multilayers when it is incorporated in the piezoelectric polymer host. The 0.03 g/L of Ti3C2 has been identified as the most appropriate concentration to ensure the optimum performance of the fabricated device with a generated output voltage of about 6.0 V. The probable reasons might be due to the uniformity of nanofiller distribution in the polyvinylidene difluoride (PVDF) and the incorporation of Ti3C2 in a polymer matrix is found to enhance the β-phase of PVDF and diminish the undesired α-phase configuration. Low tapping frequency and force were demonstrated to scavenge electrical energy from abundant mechanical energy resources particularly human motion and environmental stimuli. The fabricated device attained a power density of 14 µW.cm-2 at 10.8 MΩ of load resistor which is considerably high among 2D material-based piezoelectric nanogenerators. The device has also shown stable electrical performance for up to 4 weeks and is practically able to store energy in a capacitor and light up a LED. Hence, the Ti3C2-based piezoelectric nanogenerator suggests the potential to realize the energy harvesting application for low-power electronic devices.
  4. Deivasigamani R, Abdul Nasir NS, Mohamed MA, Buyong MR
    Electrophoresis, 2022 Feb;43(4):609-620.
    PMID: 34859896 DOI: 10.1002/elps.202100207
    This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP ) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 μm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.
  5. Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, et al.
    Electrophoresis, 2023 Mar;44(5-6):573-620.
    PMID: 36604943 DOI: 10.1002/elps.202200203
    Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
  6. Deivasigamani R, Maidin NNM, Wee MFMR, Mohamed MA, Buyong MR
    Sensors (Basel), 2021 Apr 25;21(9).
    PMID: 33922993 DOI: 10.3390/s21093007
    Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 μm to predict the behavior of keratinocytes to estimate their crossover frequency (fXO) using the DEP force (FDEP) for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 μm polystyrene particles have fXO values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted fXO from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit NDEP force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant NDEP force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius-Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.
  7. Fauzi FB, Ismail E, Syed Abu Bakar SN, Ismail AF, Mohamed MA, Md Din MF, et al.
    Phys Chem Chem Phys, 2020 Feb 12;22(6):3481-3489.
    PMID: 31989130 DOI: 10.1039/c9cp05346h
    The complicated chemical vapour deposition (CVD) is currently the most viable method of producing graphene. Most studies have extensively focused on chemical aspects either through experiments or computational studies. However, gas-phase dynamics in CVD reportedly plays an important role in improving graphene quality. Given that mass transport is the rate-limiting step for graphene deposition in atmospheric-pressure CVD (APCVD), the interfacial phenomena at the gas-solid interface (i.e., the boundary layer) are a crucial controlling factor. Accordingly, only by understanding and controlling the boundary-layer thickness can uniform full-coverage graphene deposition be achieved. In this study, a simplified computational fluid dynamics analysis of APCVD was performed to investigate gas-phase dynamics during deposition. Boundary-layer thickness was also estimated through the development of a customised homogeneous gas model. Interfacial phenomena, particularly the boundary layer and mass transport within it, were studied. The effects of Reynolds number on these factors were explored and compared with experimentally obtained results of the characterised graphene deposit. We then discussed and elucidated the important relation of fluid dynamics to graphene growth through APCVD.
  8. Hasnan NSN, Mohamed MA, Nordin NA, Wan Ishak WNR, Kassim MB
    Carbohydr Polym, 2023 Oct 01;317:121096.
    PMID: 37364961 DOI: 10.1016/j.carbpol.2023.121096
    Cellulose continues to play an important and emerging role in photocatalysis, and its favourable properties, such as electron-rich hydroxyl groups, could enhance the performance of photocatalytic reactions. For the first time, this study exploited the kapok fibre with microtubular structure (t-KF) as a solid electron donor to enhance the photocatalytic activity of C-doped g-C3N4 (CCN) via ligand-to-metal-charge-transfer (LMCT) to improve hydrogen peroxide (H2O2) production performance. As confirmed by various characterisation techniques, the hybrid complex consisting of CCN grafted on t-KF was successfully developed in the presence of succinic acid (SA) as a cross-linker via a simple hydrothermal approach. The complexation formation between CCN and t-KF results in the CCN-SA/t-KF sample displaying a higher photocatalytic activity than pristine g-C3N4 to produce H2O2 under visible light irradiation. The enhanced physicochemical and optoelectronic properties of CCN-SA/t-KF imply that the LMCT mechanism is crucial in improving photocatalytic activity. This study promotes utilising the unique t-KF material's properties to develop a low-cost and high-performance cellulose-based LMCT photocatalyst.
  9. Hossain CA, Mohamed MA, Zishan MSR, Ahasan R, Sharun SM
    Int J Inf Technol, 2022 Jan 29.
    PMID: 35128304 DOI: 10.1007/s41870-021-00821-9
    The telemedicine service concept was mainly established to benefit the underprivileged people from rural areas of a country. However, due to the low literacy and awareness rates among rural population of Bangladesh, the service is not much effective. This paper represents a study on the awareness of the rural population of telemedicine service in Bangladesh and few key findings indicate how the awareness could be increased. The research also suggests that utilizing blockchain technology can enhance the data security and privacy. The research reveals some of the findings which can raise the awareness and popularity of telemedicine service among rural population. We have proposed implementation of blockchain technology which can vastly improve the security issue.
  10. Johari MH, Sirat MS, Mohamed MA, Mohd Nasir SNF, Mat Teridi MA, Mohmad AR
    Nanotechnology, 2020 Jul 24;31(30):305710.
    PMID: 32244229 DOI: 10.1088/1361-6528/ab8666
    Vertically standing MoS2 nanoflakes are favourable in applications such as energy storage devices, hydrogen evolution reactions, and gas sensors due to their large surface area and high density of exposed edges. In this work, we report the effect of Mo vapor concentration on the morphology of vertical MoS2 nanoflakes prepared by chemical vapor deposition at atmospheric pressure. A series of MoS2 samples were grown under different Mo vapor concentrations by varying the separation distance (x) between the MoO3 source and the substrate. Field emission scanning electron microscopy showed the sample grown at x = 1 cm had a high density of vertical flakes (7 vertical flakes µm-2) with an average flake length of ~770 nm and thickness of ~10 nm. As x increased to 4 cm, the average flake length was reduced to ~150 nm while the flake orientation changed from vertical to lateral. That is, high Mo vapor concentration favours the formation of large and vertical MoS2 nanoflakes. However, oversupply of Mo vapor results in significantly thicker flakes. Raman spectra of all samples showed two main peaks at 380 and 407 cm-1 that correspond to the E12g and A1g vibrational peaks of MoS2. As x decreased from 4 to 1, the peak intensity ratio (E12g/A1g) reduced from 0.58 to 0.42, suggesting greater dominance of vertical flakes at low x. X-ray diffraction data showed a prominent peak at 14.4°, which corresponded to the (002) diffraction peak of 2H MoS2. Transmission electron microscopy verified the flakes consist of eight layers with an interlayer spacing of 0.62 nm. Based on hydrogen evolution reaction measurements, samples with thin flakes have high catalytic activity. This work highlights the importance of optimizing Mo vapor concentration to obtain a high density of thin, large, and vertically standing MoS2 nanoflakes.
  11. Kazmi J, Raza SRA, Ahmad W, Masood A, Jalil A, Mohd Raub AA, et al.
    Phys Chem Chem Phys, 2023 May 24;25(20):14206-14218.
    PMID: 37165672 DOI: 10.1039/d3cp00114h
    Non-magnetic dopants and p-type materials are attractive choices to explore the mechanism and origin of room-temperature defect-based ferromagnetism in metal oxide-based DMSs. In this study, we performed comprehensive transport, magnetic, structural, optical, and compositional as well as DFT studies of pristine, Li-doped, and Bi-Li codoped vertically aligned ZnO NW films to explore the mechanism and origin of ferromagnetism. We used a simple solution process to synthesize a wurtzite structure and vertically aligned ZnO NWs on a Si substrate. The doping, high crystallinity, and vertical alignment along the 002 planes were evidenced through HRTEM, FESEM, and XRD measurements. The XPS analysis confirmed the +1 and +3 states of Li and Bi, respectively. Moreover, Raman analysis also depicted the characteristic peaks of ZnO NWs at 98.31 cm-1 and 437.71 cm-1. The PL studies of doped NWs showed a typical NBE peak of ZnO at ∼395 nm along with a sub-gap defect-related broad peak at ∼504 nm indicating the presence of defects due to doping. The pure ZnO NW samples showed negligible saturation magnetization (Ms) at room temperature while the saturation magnetization was observed to increase with Li-doping and reduced with Bi-Li codoping. According to the Hall studies the pure ZnO NW film showed n-type conductivity, while all doped and codoped samples showed p-type conductivity. The hole concentration was observed to increase with Li-doping and decrease with Bi-Li codoping showing similar behavior to that of the Ms value, thereby suggesting a direct correlation between Ms and carrier concentration. The I-V properties showed a similar trend to that of carrier concentration and Ms. Our DFT studies showed that magnetization increased by Li doping and reduced by Li-Bi codoping in defective ZnO crystals by replacing Zn with Li and Bi atoms at the Zn site. Overall, our studies highlight the immense potential of hole-mediated Bi-Li codoped ZnO NW devices which are expected to play a pivotal role in developing spintronic devices.
  12. Kean Ping L, Mohamed MA, Kumar Mondal A, Mohamad Taib MF, Samat MH, Berhanuddin DD, et al.
    Micromachines (Basel), 2021 Mar 24;12(4).
    PMID: 33804978 DOI: 10.3390/mi12040348
    The crystal structure, electron charge density, band structure, density of states, and optical properties of pure and strontium (Sr)-doped β-Ga2O3 were studied using the first-principles calculation based on the density functional theory (DFT) within the generalized-gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE). The reason for choosing strontium as a dopant is due to its p-type doping behavior, which is expected to boost the material's electrical and optical properties and maximize the devices' efficiency. The structural parameter for pure β-Ga2O3 crystal structure is in the monoclinic space group (C2/m), which shows good agreement with the previous studies from experimental work. Bandgap energy from both pure and Sr-doped β-Ga2O3 is lower than the experimental bandgap value due to the limitation of DFT, which will ignore the calculation of exchange-correlation potential. To counterbalance the current incompatibilities, the better way to complete the theoretical calculations is to refine the theoretical predictions using the scissor operator's working principle, according to literature published in the past and present. Therefore, the scissor operator was used to overcome the limitation of DFT. The density of states (DOS) shows the hybridization state of Ga 3d, O 2p, and Sr 5s orbital. The bonding population analysis exhibits the bonding characteristics for both pure and Sr-doped β-Ga2O3. The calculated optical properties for the absorption coefficient in Sr doping causes red-shift of the absorption spectrum, thus, strengthening visible light absorption. The reflectivity, refractive index, dielectric function, and loss function were obtained to understand further this novel work on Sr-doped β-Ga2O3 from the first-principles calculation.
  13. Krishnamoorthy M, Ahmad NH, Amran HN, Mohamed MA, Kaus NHM, Yusoff SFM
    Int J Biol Macromol, 2021 Jul 01;182:1495-1506.
    PMID: 34019924 DOI: 10.1016/j.ijbiomac.2021.05.104
    Semiconductor materials have shown a good photocatalytic behaviour for the photodegradation of organic pollutants. In this work, maleated liquid natural rubber (MLNR) based hydrogel supported bismuth ferrite (BiFeO3) as photocatalyst was successfully synthesized by crosslinking with acrylic acid (AAc) assisted by the ultrasonication method to study the efficiency for the removal of methylene blue (MB) dye in wastewater. Response surface methodology (RSM) was used to optimize the parameters for adsorption of the methylene blue (MB) dye compound, whereby the effects of the initial concentration of MB and the adsorption time were examined to obtain a quadratic model for the respective hydrogel composite. The prepared composite sample was characterized by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX) and X-ray Diffraction (XRD) analysis. Remarkable improvement for removal of methylene blue (99% removal) was found within 3 h adsorption time with a MLNR/AAc-BiFeO3 hydrogel composite as compared to the pristine hydrogel. A synergistic mode of dye removal by adsorption and photodegradation is proposed. Based on the isotherm and kinetic study conducted, it was found that Freundlich isotherm model and a pseudo second-order kinetic model was best fitted for adsorption of MB dye. The MLNR/AAc-BiFeO3 composite maintains its removal efficiency after 5 cycles without the necessity of post-treatment separation. Therefore, it is crucial to note that the resultant low-cost MLNR/AAc-BiFeO3 hydrogel composite in this study offers excellent potential for water and wastewater treatment applications with improved recyclability and recovery.
  14. Mohamed MA, Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Jamil SM
    Carbohydr Polym, 2015 Nov 20;133:429-37.
    PMID: 26344299 DOI: 10.1016/j.carbpol.2015.07.057
    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application.
  15. Mohamed MA, W Salleh WN, Jaafar J, Mohd Hir ZA, Rosmi MS, Abd Mutalib M, et al.
    Carbohydr Polym, 2016 08 01;146:166-73.
    PMID: 27112862 DOI: 10.1016/j.carbpol.2016.03.050
    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation.
  16. Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, et al.
    Int J Biol Macromol, 2017 Oct;103:1232-1256.
    PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181
    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
  17. Mohamed MA, W Salleh WN, Jaafar J, Ismail AF, Abd Mutalib M, Mohamad AB, et al.
    Carbohydr Polym, 2017 Feb 10;157:1892-1902.
    PMID: 27987909 DOI: 10.1016/j.carbpol.2016.11.078
    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H2SO4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively.
  18. Mohd Maidin NN, Buyong MR, A Rahim R, Mohamed MA
    Electrophoresis, 2021 10;42(20):2033-2059.
    PMID: 34346062 DOI: 10.1002/elps.202100043
    Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in nonuniform electric fields by utilizing unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to DEP application in biomedical field reported between 2016 and 2020. First, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Second, the biomedical uses of DEP in liquid biopsies, stem cell-based therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned.
  19. Mohd Raub AA, Bahru R, Mohamed MA, Latif R, Mohammad Haniff MAS, Simarani K, et al.
    Nanotechnology, 2024 Apr 02;35(24).
    PMID: 38484390 DOI: 10.1088/1361-6528/ad33e8
    Nanostructured metal oxide semiconductors have emerged as promising nanoscale photocatalysts due to their excellent photosensitivity, chemical stability, non-toxicity, and biocompatibility. Enhancing the photocatalytic activity of metal oxide is critical in improving their efficiency in radical ion production upon optical exposure for various applications. Therefore, this review paper provides an in-depth analysis of the photocatalytic activity of nanostructured metal oxides, including the photocatalytic mechanism, factors affecting the photocatalytic efficiency, and approaches taken to boost the photocatalytic performance through structure or material modifications. This paper also highlights an overview of the recent applications and discusses the recent advancement of ZnO-based nanocomposite as a promising photocatalytic material for environmental remediation, energy conversion, and biomedical applications.
  20. Mondal AK, Mohamed MA, Ping LK, Mohamad Taib MF, Samat MH, Mohammad Haniff MAS, et al.
    Materials (Basel), 2021 Jan 28;14(3).
    PMID: 33525586 DOI: 10.3390/ma14030604
    Gallium oxide (Ga2O3) is a promising wide-band-gap semiconductor material for UV optical detectors and high-power transistor applications. The fabrication of p-type Ga2O3 is a key problem that hinders its potential for realistic power applications. In this paper, pure α-Ga2O3 and Ca-doped α-Ga2O3 band structure, the density of states, charge density distribution, and optical properties were determined by a first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. It was found that calcium (Ca) doping decreases the bandgap by introducing deep acceptor energy levels as the intermediate band above the valence band maximum. This intermediate valence band mainly consists of Ca 3p and O 2p orbitals and is adequately high in energy to provide an opportunity for p-type conductivity. Moreover, Ca doping enhances the absorptivity and reflectivity become low in the visible region. Aside, transparency decreases compared to the pure material. The optical properties were studied and clarified by electrons-photons interband transitions along with the complex dielectric function's imaginary function.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links