Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Kwek SK, Chew WM, Ong KC, Ng AW, Lee LS, Kaw G, et al.
    J Psychosom Res, 2006 May;60(5):513-9.
    PMID: 16650592
    BACKGROUND: Little is known about the long-term consequence of severe acute respiratory syndrome (SARS). We carried out an assessment on SARS patients after their recovery from their acute illness.

    METHOD: Postal survey comprising Health-Related Quality of Life (HRQoL) questionnaires and anxiety and depression measures was sent to them at 3 months' postdischarge.

    RESULTS: There was a significant impairment in both the HRQoL and mental functioning. Forty-one percent had scores indicative of a posttraumatic stress disorder (PTSD); about 30% had likely anxiety and depression.

    CONCLUSION: SARS has significant impact on HRQoL and psychological status at 3 months.

  2. Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, et al.
    J Virol Methods, 2007 Aug;143(2):140-6.
    PMID: 17442409
    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
  3. Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al.
    J. Neuropathol. Exp. Neurol., 2008 Feb;67(2):162-9.
    PMID: 18219253 DOI: 10.1097/nen.0b013e318163a990
    Previous neuropathologic studies of Enterovirus 71 encephalomyelitis have not investigated the anatomic distribution of inflammation and viral localization in the central nervous system (CNS) in detail. We analyzed CNS and non-CNS tissues from 7 autopsy cases from Malaysia and found CNS inflammation patterns to be distinct and stereotyped. Inflammation was most marked in spinal cord gray matter, brainstem, hypothalamus, and subthalamic and dentate nuclei; it was focal in the cerebrum, mainly in the motor cortex, and was rare in dorsal root ganglia. Inflammation was absent in the cerebellar cortex, thalamus, basal ganglia, peripheral nerves, and autonomic ganglia. The parenchymal inflammatory response consisted of perivascular cuffs, variable edema, neuronophagia, and microglial nodules. Inflammatory cells were predominantly CD68-positive macrophage/microglia, but there were a few CD8-positive lymphocytes. There were no viral inclusions; viral antigens and RNA were localized only in the somata and processes of small numbers of neurons and in phagocytic cells. There was no evidence of virus in other CNS cells, peripheral nerves, dorsal root autonomic ganglia, or non-CNS organs. The results indicate that Enterovirus 71 is neuronotropic, and that, although hematogenous spread cannot be excluded, viral spread into the CNS could be via neural pathways, likely the motor but not peripheral sensory or autonomic pathways. Viral spread within the CNS seems to involve motor and possibly other pathways.
  4. Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT
    J. Neuropathol. Exp. Neurol., 2008 Jun;67(6):532-42.
    PMID: 18520772 DOI: 10.1097/NEN.0b013e31817713e7
    We describe a model of Enterovirus 71 encephalomyelitis in 2-week-old mice that shares many features with the human central nervous system (CNS) disease. Mice were infected via oral and parenteral routes with a murine-adapted virus strain originally from a fatal human case. The mice succumbed to infection after 2 to 5 days. Vacuolated and normal-appearing CNS neurons showed viral RNA and antigens and virions by in situ hybridization, immunohistochemistry, and electron microscopy; inflammation was minimal. The most numerous infected neurons were in anterior horns, motor trigeminal nuclei, and brainstem reticular formation; fewer neurons in the red nucleus, lateral cerebellar nucleus, other cranial nerve nuclei, motor cortex, hypothalamus, and thalamus were infected. Other CNS regions, dorsal root, and autonomic ganglia were spared. Intramuscular-inoculated mice killed 24 to 36 hours postinfection had viral RNA and antigens in ipsilateral lumbar anterior horn cells and adjacent axons. Upper cord motor neurons, brainstem, and contralateral motor cortex neurons were infected from 48-72 hours. Viral RNA and antigens were abundant in skeletal muscle and adjacent tissues but not in other organs. The distinct, stereotypic viral distribution in this model suggests that the virus enters the CNS via peripheral motor nerves after skeletal muscle infection, and spread within the CNS involves motor and other neural pathways. This model may be useful for further studies on pathogenesis and for testing therapies.
  5. Ong KC, Devi S, Cardosa MJ, Wong KT
    J Virol, 2010 Jan;84(1):661-5.
    PMID: 19864378 DOI: 10.1128/JVI.00999-09
    Enterovirus 71 (EV71) causes childhood hand, foot, and mouth disease and neurological complications, and no vaccines or therapeutic drugs are currently available. Formaldehyde-inactivated whole-virus vaccines derived from EV71 clinical isolates and a mouse-adapted virus (MAV) were tested in a mouse model of EV71 encephalomyelitis. After only two immunizations, given to mice at 1 and 7 days of age, the MAV vaccine protected mice at 14 days of age from disease. Tissues from immunized mice were negative for virus by viral culture, reverse transcriptase PCR, immunohistochemistry analysis, and in situ hybridization. Cross-neutralizing EV71 antibodies to strains with genotypes B3, B4, and C1 to C5 generated in immunized adult mice were able to passively protect 14-day-old mice from disease.
  6. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
  7. Wong KT, Ong KC
    Patholog Res Int, 2011;2011:567248.
    PMID: 21961078 DOI: 10.4061/2011/567248
    Zoonoses as causes of human infections have been increasingly reported, and many of these are viruses that cause central nervous system infections. This paper focuses on the henipaviruses (family Paramyxoviridae, genus henipavirus) that have recently emerged to cause severe encephalitis and systemic infection in humans and animals in the Asia-Pacific region. The pathological features in the human infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis, etc.) and parenchymal cell infection in the central nervous system, lung, kidney, and other major organs. Most animals naturally or experimentally infected show more or less similar features confirming the dual pathogenetic mechanism of vasculopathy-associated microinfarction and direct extravascular parenchymal cell infection as causes of tissue injury. The most promising animal models include the hamster, ferret, squirrel monkey, and African green monkey. With increasing evidence of infection in the natural hosts, the pteropid bats and, hence, probable future outbreaks in many more countries, a greater awareness of henipavirus infection in both humans and animals is imperative.
  8. Wong KT, Ng KY, Ong KC, Ng WF, Shankar SK, Mahadevan A, et al.
    Neuropathol. Appl. Neurobiol., 2012 Aug;38(5):443-53.
    PMID: 22236252 DOI: 10.1111/j.1365-2990.2011.01247.x
    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished.
  9. Ch'ng WC, Stanbridge EJ, Wong KT, Ong KC, Yusoff K, Shafee N
    Virol J, 2012;9:155.
    PMID: 22877087 DOI: 10.1186/1743-422X-9-155
    Enterovirus 71 (EV71) causes severe neurological diseases resulting in high mortality in young children worldwide. Development of an effective vaccine against EV71 infection is hampered by the lack of appropriate animal models for efficacy testing of candidate vaccines. Previously, we have successfully tested the immunogenicity and protectiveness of a candidate EV71 vaccine, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP11-100) protein, in a mouse model of EV71 infection. A drawback of this system is its limited window of EV71 susceptibility period, 2 weeks after birth, leading to restricted options in the evaluation of optimal dosing regimens. To address this issue, we have assessed the NPt-VP11-100 candidate vaccine in a hamster system, which offers a 4-week susceptibility period to EV71 infection. Results obtained showed that the NPt-VP11-100 candidate vaccine stimulated excellent humoral immune response in the hamsters. Despite the high level of antibody production, they failed to neutralize EV71 viruses or protect vaccinated hamsters in viral challenge studies. Nevertheless, these findings have contributed towards a better understanding of the NPt-VP11-100 recombinant protein as a candidate vaccine in an alternative animal model system.
  10. Mathieu C, Guillaume V, Sabine A, Ong KC, Wong KT, Legras-Lachuer C, et al.
    PLoS One, 2012;7(2):e32157.
    PMID: 22393386 DOI: 10.1371/journal.pone.0032157
    Nipah virus (NiV) is a recently emerged zoonotic Paramyxovirus that causes regular outbreaks in East Asia with mortality rate exceeding 75%. Major cellular targets of NiV infection are endothelial cells and neurons. To better understand virus-host interaction, we analyzed the transcriptome profile of NiV infection in primary human umbilical vein endothelial cells. We further assessed some of the obtained results by in vitro and in vivo methods in a hamster model and in brain samples from NiV-infected patients. We found that NiV infection strongly induces genes involved in interferon response in endothelial cells. Among the top ten upregulated genes, we identified the chemokine CXCL10 (interferon-induced protein 10, IP-10), an important chemoattractant involved in the generation of inflammatory immune response and neurotoxicity. In NiV-infected hamsters, which develop pathology similar to what is seen in humans, expression of CXCL10 mRNA was induced in different organs with kinetics that followed NiV replication. Finally, we showed intense staining for CXCL10 in the brain of patients who succumbed to lethal NiV infection during the outbreak in Malaysia, confirming induction of this chemokine in fatal human infections. This study sheds new light on NiV pathogenesis, indicating the role of CXCL10 during the course of infection and suggests that this chemokine may serve as a potential new marker for lethal NiV encephalitis.
  11. Jessie K, Jayapalan JJ, Ong KC, Abdul Rahim ZH, Zain RM, Wong KT, et al.
    Electrophoresis, 2013 Sep;34(17):2495-502.
    PMID: 23784731 DOI: 10.1002/elps.201300107
    Confirmation of oral squamous cell cancer (OSCC) currently relies on histological analysis, which does not provide clear indication of cancer development from precancerous lesions. In the present study, whole saliva proteins of patients with OSCC (n = 12) and healthy subjects (n = 12) were separated by 2DE to identify potential candidate biomarkers that are much needed to improve detection of the cancer. The OSCC patients' 2DE saliva protein profiles appeared unique and different from those obtained from the healthy subjects. The patients' saliva α1-antitrypsin (AAT) and haptoglobin (HAP) β chains were resolved into polypeptide spots with increased microheterogeneity, although these were not apparent in their sera. Their 2DE protein profiles also showed presence of hemopexin and α-1B glycoprotein, which were not detected in the profiles of the control saliva. When subjected to densitometry analysis, significant altered levels of AAT, complement C3, transferrin, transthyretin, and β chains of fibrinogen and HAP were detected. The increased levels of saliva AAT, HAP, complement C3, hemopexin, and transthyretin in the OSCC patients were validated by ELISA. The strong association of AAT and HAP with OSCC was further supported by immunohistochemical staining of cancer tissues. The differently expressed saliva proteins may be useful complementary biomarkers for the early detection and/or monitoring of OSCC, although this requires validation in clinically representative populations.
  12. He Y, Ong KC, Gao Z, Zhao X, Anderson VM, McNutt MA, et al.
    Am J Pathol, 2014 Mar;184(3):714-20.
    PMID: 24378407 DOI: 10.1016/j.ajpath.2013.11.009
    Enterovirus 71 (EV71; family Picornaviridae, species human Enterovirus A) usually causes hand, foot, and mouth disease, which may rarely be complicated by fatal encephalomyelitis. We investigated extra-central nervous system (extra-CNS) tissues capable of supporting EV71 infection and replication, and have correlated tissue infection with expression of putative viral entry receptors, scavenger receptor B2 (SCARB2), and P-selectin glycoprotein ligand-1 (PSGL-1). Formalin-fixed, paraffin-embedded CNS and extra-CNS tissues from seven autopsy cases were examined by IHC and in situ hybridization to evaluate viral antigens and RNA. Viral receptors were identified with IHC. In all seven cases, the CNS showed stereotypical distribution of inflammation and neuronal localization of viral antigens and RNA, confirming the clinical diagnosis of EV71 encephalomyelitis. In six cases in which tonsillar tissues were available, viral antigens and/or RNA were localized to squamous epithelium lining the tonsillar crypts. Tissues from the gastrointestinal tract, pancreas, mesenteric nodes, spleen, and skin were all negative for viral antigens/RNA. Our novel findings strongly suggest that tonsillar crypt squamous epithelium supports active viral replication and represents an important source of viral shedding that facilitates person-to-person transmission by both the fecal-oral or oral-oral routes. It may also be a portal for viral entry. A correlation between viral infection and SCARB2 expression appears to be more significant than for PSGL-1 expression.
  13. Eu LC, Ong KC, Hiu J, Vadivelu J, Nathan S, Wong KT
    Mod Pathol, 2014 May;27(5):657-64.
    PMID: 24186135 DOI: 10.1038/modpathol.2013.184
    Burkholderia pseudomallei causes a potentially fatal infection called melioidosis. We have developed a nonfluorescent, colorimetric in situ hybridization assay using a specific probe to target 16s rRNA of B. pseudomallei in formalin-fixed, paraffin-embedded infected tissues for diagnostic purposes and to study infectious disease pathology. A 63-base pair DNA probe was synthesized and labeled with digoxigenin by PCR. Probe specificity was confirmed by BLAST analysis and by testing on appropriate microbial controls. The in situ hybridization assay was specifically and consistently positive for B. pseudomallei, showing strongly and crisply stained, single bacillus and bacilli clusters in mainly inflamed tissues in seven human acute melioidosis cases and experimentally infected mouse tissues. Intravascular and extravascular bacilli were detected in both intracellular and extracellular locations in various human organs, including lung, spleen, kidney, liver, bone marrow, and aortic mycotic aneurysm, particularly in the inflamed areas. Intravascular, intracellular bacteria in melioidosis have not been previously reported. Although the identity of infected intravascular leukocytes has to be confirmed, extravascular, intracellular bacilli appear to be found mainly within macrophages and neutrophils. Rarely, large intravascular, extracellular bacillary clusters/emboli could be detected in both human and mouse tissues. B. cepacia and non-Burkholderia pathogens (16 microbial species) all tested negative. Nonpathogenic B. thailandensis showed some cross-hybridization but signals were less intense. This in situ hybridization assay could be usefully adapted for B. pseudomallei identification in other clinical specimens such as pus and sputum.
  14. Tan SH, Ong KC, Wong KT
    J. Neuropathol. Exp. Neurol., 2014 Nov;73(11):999-1008.
    PMID: 25289894 DOI: 10.1097/NEN.0000000000000122
    Enterovirus 71 (EV71)-associated hand, foot, and mouth disease may be complicated by encephalomyelitis. We investigated EV71 brainstem infection and whether this infection could be ameliorated by passive immunization in a mouse model. Enterovirus 71 was injected into unilateral jaw/facial muscles of 2-week-old mice, and hyperimmune sera were given before or after infection. Harvested tissues were studied by light microscopy, immunohistochemistry, in situ hybridization, and viral titration. In unimmunized mice, viral antigen and RNA were detected within 24 hours after infection only in ipsilateral cranial nerves, motor trigeminal nucleus, reticular formation, and facial nucleus; viral titers were significantly higher in the brainstem than in the spinal cord samples. Mice given preinfection hyperimmune serum showed a marked reduction of ipsilateral viral antigen/RNA and viral titers in the brainstem in a dose-dependent manner. With optimum hyperimmune serum given after infection, brainstem infection was significantly reduced in a time-dependent manner. A delay in disease onset and a reduction of disease severity and mortality were also observed. Thus, EV71 can directly infect the brainstem, including the medulla, via cranial nerves, most likely by retrograde axonal transport. This may explain the sudden cardiorespiratory collapse in human patients with fatal encephalomyelitis. Moreover, our results suggest that passive immunization may still benefit EV71-infected patients who have neurologic complications.
  15. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J Virol Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
  16. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):614-24.
    PMID: 26276025 DOI: 10.1111/bpa.12279
    Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
  17. Ong KC, Wong KT
    Brain Pathol, 2015 Sep;25(5):605-13.
    PMID: 26276024 DOI: 10.1111/bpa.12278
    The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
  18. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al.
    BMC Med, 2015;13:226.
    PMID: 26381232 DOI: 10.1186/s12916-015-0448-7
    To investigate the long-term effects on immunity of an inactivated enterovirus 71 (EV71) vaccine and its protective efficacy.
  19. Chow TK, Eu LC, Chin KF, Ong KC, Pailoor J, Vadivelu J, et al.
    Am J Trop Med Hyg, 2016 Mar 2;94(3):522-4.
    PMID: 26787155 DOI: 10.4269/ajtmh.15-0774
    We report a rare case of an asymptomatic latent melioidosis lesion in a posttraumatic splenectomy specimen from a diabetic patient. The 2-cm yellowish, lobulated lesion was found in the splenic parenchyma well away from the traumatized areas. Microscopically, it consisted of a central area of necrosis and exudate surrounded by macrophages, epithelioid cells, lymphocytes, and occasional multinucleated giant cells. Burkholderia bacilli were detected by a novel in situ hybridization (ISH) assay, and confirmed by polymerase chain reaction and sequencing to be Burkholderia pseudomallei. As melioidosis was not suspected initially, bacterial culture was not done but electron microscopy showed morphologically viable and dividing bacilli in the lesion. Moreover, the surgical wound became infected with B. pseudomallei several days post-surgery. After treatment with ceftazidime and trimethoprim/sulfamethoxazole, the wound infection cleared. We believe this could be a unique case of asymptomatic latent melioidosis in the spleen. In endemic countries, chronic granulomas should be investigated for B. pseudomallei infection, and if available, ISH may be helpful for diagnosis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links