Influenza is an infectious disease that leads to an estimated 5 million cases of severe illness and 650,000 respiratory deaths worldwide each year. The early detection and prediction of influenza outbreaks are crucial for efficient resource planning to save patient's lives and healthcare costs. We propose a new data-driven methodology for influenza outbreak detection and prediction at very local levels. A doctor's diagnostic dataset of influenza-like illness from more than 3000 clinics in Malaysia is used in this study because these diagnostic data are reliable and can be captured promptly. A new region index (RI) of the influenza outbreak is proposed based on the diagnostic dataset. By analysing the anomalies in the weekly RI value, potential outbreaks are identified using statistical methods. An ensemble learning method is developed to predict potential influenza outbreaks. Cross-validation is conducted to optimize the hyperparameters of the ensemble model. A testing data set is used to provide an unbiased evaluation of the model. The proposed methodology is shown to be sensitive and accurate at influenza outbreak prediction, with average of 75% recall, 74% precision, and 83% accuracy scores across five regions in Malaysia. The results are also validated by Google Flu Trends data, news reports, and surveillance data released by World Health Organization.
We report a case of a 21-year-old university student with underlying lupus nephritis who presented with recurrent symptoms of fever, haemoptysis, and pleuritic chest pain. CT pulmonary angiogram confirmed pulmonary embolism in the right subsegmental pulmonary arteries. One week later, she developed left renal vein and left common iliac vein thromboses, with new emboli in the left subsegmental pulmonary arteries. We hereforth discuss the diagnostic issues of a patient with systemic lupus erythematosus (SLE) on corticosteroids therapy, and also treatment of the antiphospholipid syndrome.
This study aims to determine whether the diagnostic yield of flexible bronchoscopy sampling procedures in patients with lung cancer was dependent on tumour location.
During normal sleep the tone of the pharyngeal airway dilator muscles is decreased resulting in upper airway narrowing and increased resistance to airflow. Nasal obstruction may result from a variety of anatomical abnormalities such as septal deviation, nasal polyps, adenoid hypertrophy and rhinitis such as allergic rhinitis, acute viral rhinitis, vasomotor rhinitis and non-allergic rhinitis with nasal eosinophilia syndrome. Disordered breathing during sleep can both result from and be worsened by nasal obstruction. In children, nasal obstruction due to enlarged tonsils and adenoids results in a switch to oral breathing which may lead to the adenoid faces because of changes in the craniofacial structures during growth that predispose to disordered breathing during sleep.
Owing to its intricate autoimmune pathophysiology and significant risks of progression to other rheumatic co-morbidities (i.e., osteoporosis and osteoarthritis), a plausible therapeutic regimen is mandatory for early-stage management of rheumatoid arthritis (RA). Nevertheless, the conventional therapeutic agents particularly the corticosteroids and disease-modifying anti-rheumatic drugs (DMARDs) have shown grander success in the treatment of RA; however, long-term use of these agents is also associated with serious adverse events. To combat these issues and optimize therapeutic efficacy, nanotechnology-based interventions have been emerged as viable option. While, nanomedicines signposted superiority over the conventional pharmacological moieties; there are still many pharmacokinetic and pharmacodynamic challenges to nanomedicines following their intravenous or intra-articular administration. To circumvent these challenges, significant adaptations such as PEGylation, surface conjugation of targeting ligand(s), and site- responsive behavior (i.e., pH-, biochemical-, or thermal-responsiveness) have been implemented. Besides, multi-functionalization of nanomedicines has been emerging as an exceptional strategy to overcome pharmacokinetic challenges, improve targetability to inflamed synovium, maximise internalisation into the activated macrophages, and improved therapeutic outcomes for treatment of RA. Therefore, this review aims to conceptualize and recapitulate the substantial evidences regarding the pharmacokinetic and pharmacodynamic superiority of multi-functionalized nanomedicines over the naked nanomedicines for site-selective targeting to inflamed synovium and rational treatment of RA and other rheumatic co-morbidities. Pharmaceutical sustainability of the multi-functionalized nanomedicines for improved biocompatibility, profound interaction with the targeting tissue/cells/sub-cellular domain, and diminished systemic toxicity has also been pondered.
Impaired S-mephenytoin 4'-hydroxylation is a well-described genetic polymorphism affecting drug metabolism in humans. Although ethnic differences in its distribution of polymorphism has been described, it is not known whether there is an ethnic heterogeneity of the structure and expression of the CYP2C19 enzyme in the Malaysian population.
A divergent synthesis of skeletally distinct arboridinine and arborisidine was achieved. The central divergent strategy was inspired by the divergent biosynthetic cyclization mode of arboridinine and arborisidine and their hidden topological connection. The branch point was reached through a Michael and Mannich cascade process. A site-selective intramolecular Mannich reaction was developed to construct the tetracyclic core of arboridinine, while a site-selective intramolecular α-amination of ketone was used to access the tetracyclic core of arborisidine. A strategic Peterson olefination through intramolecular nucleophile delivery was able to set up the exocyclic olefin of arboridinine.
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.