Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Awuah WA, Tenkorang PO, Ng JC, Abdul-Rahman T
    Neurosurgery, 2023 Jul 01;93(1):e16.
    PMID: 37097024 DOI: 10.1227/neu.0000000000002515
  2. Awuah WA, Ng JC, Bulut HI, Nazir A, Tenkorang PO, Yarlagadda R, et al.
    Int J Surg, 2023 Mar 01;109(3):519-520.
    PMID: 36927835 DOI: 10.1097/JS9.0000000000000025
  3. Awuah WA, Kalmanovich J, Mehta A, Huang H, Abdul-Rahman T, Cheng Ng J, et al.
    Curr Top Med Chem, 2023;23(5):389-402.
    PMID: 36593538 DOI: 10.2174/1568026623666230102095836
    Glioblastoma Multiforme (GBM) is a debilitating type of brain cancer with a high mortality rate. Despite current treatment options such as surgery, radiotherapy, and the use of temozolomide and bevacizumab, it is considered incurable. Various methods, such as drug repositioning, have been used to increase the number of available treatments. Drug repositioning is the use of FDA-approved drugs to treat other diseases. This is possible because the drugs used for this purpose have polypharmacological effects. This means that these medications can bind to multiple targets, resulting in multiple mechanisms of action. Antipsychotics are one type of drug used to treat GBM. Antipsychotics are a broad class of drugs that can be further subdivided into typical and atypical classes. Typical antipsychotics include chlorpromazine, trifluoperazine, and pimozide. This class of antipsychotics was developed early on and primarily works on dopamine D2 receptors, though it can also work on others. Olanzapine and Quetiapine are examples of atypical antipsychotics, a category that was created later. These medications have a high affinity for serotonin receptors such as 5- HT2, but they can also act on dopamine and H1 receptors. Antipsychotic medications, in the case of GBM, also have other effects that can affect multiple pathways due to their polypharmacological effects. These include NF-B suppression, cyclin deregulation, and -catenin phosphorylation, among others. This review will delve deeper into the polypharmacological, the multiple effects of antipsychotics in the treatment of GBM, and an outlook for the field's future progression.
  4. Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, et al.
    Biofactors, 2024 Jan 16.
    PMID: 38226733 DOI: 10.1002/biof.2039
    Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
  5. Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, et al.
    Eur J Med Res, 2023 Nov 16;28(1):529.
    PMID: 37974227 DOI: 10.1186/s40001-023-01504-w
    Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
  6. Isa MR, Mohd Noor N, Nawawi H, Kaur M., Rahman T, Mohd Kornain NK, et al.
    MyJurnal
    Imaging techniques involving optical coherence tomography, computed tomography (CT) and high-resolution magnetic resonance imaging (MRI) are used as tools to identify atherosclerotic plaques. However, the effects of water-based contrast media used in Post Mortem Computed Tomography Angiography (PMCTA) on the histopathology of atherosclerotic plaques have not been widely explored. The objective of this study is to determine the effects of water-based contrast media used in PMCTA on the histopathology of atherosclerotic plaques and biomarkers of atherosclerosis in experimentally induced established atherosclerotic rabbits. MATERIALS AND METHODS: Twenty male New Zealand white rabbits were divided into 2 groups. One group was given a high cholesterol diet (HCD) for 12 weeks to establish atherosclerosis and the control group normal diet (ND). Five rabbits from each group were then given intravenous water-based contrast media before being sacrificed. The entire length of aorta was dissected and submitted for histopathological examination and determination of tissue biomarkers α-SMA and MMP-9. RESULTS:Histopathological examination of the aorta including percentage of area covered by plaque and foam cell formation showed no significant difference in atheromatous plaque formation in both groups of HCD rabbits with or without intravenous contrast media injection (plaque: 55±41 vs. 63±15, p=0.731; foam cells: 124±83 vs. 171±55, p=0.325). Similarly, α-SMA and MMP-9 protein expression also showed no significant difference in both groups (α-SMA: 70±20 vs. 67±26, p=0.807; MMP-9: 60±12 vs. 57±17, p=0.785). CONCLUSION:Water-based contrast media used in PMCTA does not affect the morphology or the immunohistochemistry staining of SMA and MMP-9 in atherosclerotic plaques.
  7. Cheng Z, Hwang SS, Bhave M, Rahman T, Chee Wezen X
    J Chem Inf Model, 2023 Nov 13;63(21):6912-6924.
    PMID: 37883148 DOI: 10.1021/acs.jcim.3c01252
    Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug-drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure-activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.
  8. Gunasinghe KKJ, Rahman T, Chee Wezen X
    ACS Omega, 2024 Jan 16;9(2):2250-2262.
    PMID: 38250404 DOI: 10.1021/acsomega.3c05822
    The protein c-Myc is a transcription factor that remains largely intrinsically disordered and is known to be involved in various biological processes and is overexpressed in various cancers, making it an attractive drug target. However, intrinsically disordered proteins such as c-Myc do not show funnel-like basins in their free-energy landscapes; this makes their druggability a challenge. For the first time, we propose a heterodimer model of c-Myc/Max in full length in this work. We used Gaussian-accelerated molecular dynamics (GaMD) simulations to explore the behavior of c-Myc and its various regions, including the transactivation domain (TAD) and the basic helix-loop-helix-leucine-zipper (bHLH-Zipper) motif in three different conformational states: (a) monomeric c-Myc, (b) c-Myc when bound to its partner protein, Max, and (c) when Max was removed after binding. We analyzed the GaMD trajectories using root-mean-square deviation (RMSD), radius of gyration, root-mean-square fluctuation, and free-energy landscape (FEL) calculations to elaborate the behaviors of these regions. The results showed that the monomeric c-Myc structure showed a higher RMSD fluctuation as compared with the c-Myc/Max heterodimer in the bHLH-Zipper motif. This indicated that the bHLH-Zipper motif of c-Myc is more stable when it is bound to Max. The TAD region in both monomeric and Max-bound states showed similar plasticity in terms of RMSD. We also conducted residue decomposition calculations and showed that the c-Myc and Max interaction could be driven mainly by electrostatic interactions and the residues Arg299, Ile403, and Leu420 seemed to play important roles in the interaction. Our work provides insights into the behavior of c-Myc and its regions that could support the development of drugs that target c-Myc and other intrinsically disordered proteins.
  9. Ha CHX, Lee NK, Rahman T, Hwang SS, Yam WK, Chee XW
    J Biomol Struct Dyn, 2023 Apr;41(6):2146-2159.
    PMID: 35067186 DOI: 10.1080/07391102.2022.2028677
    The Human Immunodeficiency Virus (HIV) infection is a global pandemic that has claimed 33 million lives to-date. One of the most efficacious treatments for naïve or pretreated HIV patients is the HIV integrase strand transfer inhibitors (INSTIs). However, given that HIV treatment is life-long, the emergence of HIV strains resistant to INSTIs is an imminent challenge. In this work, we showed two best regression QSAR models that were constructed using a boosted Random Forest algorithm (r2 = 0.998, q210CV = 0.721, q2external_test = 0.754) and a boosted K* algorithm (r2 = 0.987, q210CV = 0.721, q2external_test = 0.758) to predict the pIC50 values of INSTIs. Subsequently, the regression QSAR models were deployed against the Drugbank database for drug repositioning. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies and accelerated Molecular Dynamics simulation. Lastly, their potential as INSTIs were also evaluated from our literature search. Our study offers the first example of a large-scale regression QSAR modelling effort for discovering highly active INSTIs to combat HIV infection.Communicated by Ramaswamy H. Sarma.
  10. Mahmud S, Ibtehaz N, Khandakar A, Tahir AM, Rahman T, Islam KR, et al.
    Sensors (Basel), 2022 Jan 25;22(3).
    PMID: 35161664 DOI: 10.3390/s22030919
    Cardiovascular diseases are the most common causes of death around the world. To detect and treat heart-related diseases, continuous blood pressure (BP) monitoring along with many other parameters are required. Several invasive and non-invasive methods have been developed for this purpose. Most existing methods used in hospitals for continuous monitoring of BP are invasive. On the contrary, cuff-based BP monitoring methods, which can predict systolic blood pressure (SBP) and diastolic blood pressure (DBP), cannot be used for continuous monitoring. Several studies attempted to predict BP from non-invasively collectible signals such as photoplethysmograms (PPG) and electrocardiograms (ECG), which can be used for continuous monitoring. In this study, we explored the applicability of autoencoders in predicting BP from PPG and ECG signals. The investigation was carried out on 12,000 instances of 942 patients of the MIMIC-II dataset, and it was found that a very shallow, one-dimensional autoencoder can extract the relevant features to predict the SBP and DBP with state-of-the-art performance on a very large dataset. An independent test set from a portion of the MIMIC-II dataset provided a mean absolute error (MAE) of 2.333 and 0.713 for SBP and DBP, respectively. On an external dataset of 40 subjects, the model trained on the MIMIC-II dataset provided an MAE of 2.728 and 1.166 for SBP and DBP, respectively. For both the cases, the results met British Hypertension Society (BHS) Grade A and surpassed the studies from the current literature.
  11. Rahman T, Khandakar A, Hoque ME, Ibtehaz N, Kashem SB, Masud R, et al.
    IEEE Access, 2021;9:120422-120441.
    PMID: 34786318 DOI: 10.1109/ACCESS.2021.3105321
    The coronavirus disease 2019 (COVID-19) after outbreaking in Wuhan increasingly spread throughout the world. Fast, reliable, and easily accessible clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. The objective of the study was to develop and validate an early scoring tool to stratify the risk of death using readily available complete blood count (CBC) biomarkers. A retrospective study was conducted on twenty-three CBC blood biomarkers for predicting disease mortality for 375 COVID-19 patients admitted to Tongji Hospital, China from January 10 to February 18, 2020. Machine learning based key biomarkers among the CBC parameters as the mortality predictors were identified. A multivariate logistic regression-based nomogram and a scoring system was developed to categorize the patients in three risk groups (low, moderate, and high) for predicting the mortality risk among COVID-19 patients. Lymphocyte count, neutrophils count, age, white blood cell count, monocytes (%), platelet count, red blood cell distribution width parameters collected at hospital admission were selected as important biomarkers for death prediction using random forest feature selection technique. A CBC score was devised for calculating the death probability of the patients and was used to categorize the patients into three sub-risk groups: low (<=5%), moderate (>5% and <=50%), and high (>50%), respectively. The area under the curve (AUC) of the model for the development and internal validation cohort were 0.961 and 0.88, respectively. The proposed model was further validated with an external cohort of 103 patients of Dhaka Medical College, Bangladesh, which exhibits in an AUC of 0.963. The proposed CBC parameter-based prognostic model and the associated web-application, can help the medical doctors to improve the management by early prediction of mortality risk of the COVID-19 patients in the low-resource countries.
  12. Tahir AM, Qiblawey Y, Khandakar A, Rahman T, Khurshid U, Musharavati F, et al.
    Cognit Comput, 2022 Jan 11.
    PMID: 35035591 DOI: 10.1007/s12559-021-09955-1
    Novel coronavirus disease (COVID-19) is an extremely contagious and quickly spreading coronavirus infestation. Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), which outbreak in 2002 and 2011, and the current COVID-19 pandemic are all from the same family of coronavirus. This work aims to classify COVID-19, SARS, and MERS chest X-ray (CXR) images using deep convolutional neural networks (CNNs). To the best of our knowledge, this classification scheme has never been investigated in the literature. A unique database was created, so-called QU-COVID-family, consisting of 423 COVID-19, 144 MERS, and 134 SARS CXR images. Besides, a robust COVID-19 recognition system was proposed to identify lung regions using a CNN segmentation model (U-Net), and then classify the segmented lung images as COVID-19, MERS, or SARS using a pre-trained CNN classifier. Furthermore, the Score-CAM visualization method was utilized to visualize classification output and understand the reasoning behind the decision of deep CNNs. Several deep learning classifiers were trained and tested; four outperforming algorithms were reported: SqueezeNet, ResNet18, InceptionV3, and DenseNet201. Original and preprocessed images were used individually and all together as the input(s) to the networks. Two recognition schemes were considered: plain CXR classification and segmented CXR classification. For plain CXRs, it was observed that InceptionV3 outperforms other networks with a 3-channel scheme and achieves sensitivities of 99.5%, 93.1%, and 97% for classifying COVID-19, MERS, and SARS images, respectively. In contrast, for segmented CXRs, InceptionV3 outperformed using the original CXR dataset and achieved sensitivities of 96.94%, 79.68%, and 90.26% for classifying COVID-19, MERS, and SARS images, respectively. The classification performance degrades with segmented CXRs compared to plain CXRs. However, the results are more reliable as the network learns from the main region of interest, avoiding irrelevant non-lung areas (heart, bones, or text), which was confirmed by the Score-CAM visualization. All networks showed high COVID-19 detection sensitivity (> 96%) with the segmented lung images. This indicates the unique radiographic signature of COVID-19 cases in the eyes of AI, which is often a challenging task for medical doctors.
  13. Rahman T, Khandakar A, Qiblawey Y, Tahir A, Kiranyaz S, Abul Kashem SB, et al.
    Comput Biol Med, 2021 May;132:104319.
    PMID: 33799220 DOI: 10.1016/j.compbiomed.2021.104319
    Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique (BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U-Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique outperforms other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classification performance from plain CXR images is slightly better than the segmented lung CXR images; however, the reliability of network performance is significantly improved for the segmented lung images, which was observed using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray images.
  14. Rahman T, Khandakar A, Abir FF, Faisal MAA, Hossain MS, Podder KK, et al.
    Comput Biol Med, 2022 Apr;143:105284.
    PMID: 35180500 DOI: 10.1016/j.compbiomed.2022.105284
    The reverse transcription-polymerase chain reaction (RT-PCR) test is considered the current gold standard for the detection of coronavirus disease (COVID-19), although it suffers from some shortcomings, namely comparatively longer turnaround time, higher false-negative rates around 20-25%, and higher cost equipment. Therefore, finding an efficient, robust, accurate, and widely available, and accessible alternative to RT-PCR for COVID-19 diagnosis is a matter of utmost importance. This study proposes a complete blood count (CBC) biomarkers-based COVID-19 detection system using a stacking machine learning (SML) model, which could be a fast and less expensive alternative. This study used seven different publicly available datasets, where the largest one consisting of fifteen CBC biomarkers collected from 1624 patients (52% COVID-19 positive) admitted at San Raphael Hospital, Italy from February to May 2020 was used to train and validate the proposed model. White blood cell count, monocytes (%), lymphocyte (%), and age parameters collected from the patients during hospital admission were found to be important biomarkers for COVID-19 disease prediction using five different feature selection techniques. Our stacking model produced the best performance with weighted precision, sensitivity, specificity, overall accuracy, and F1-score of 91.44%, 91.44%, 91.44%, 91.45%, and 91.45%, respectively. The stacking machine learning model improved the performance in comparison to other state-of-the-art machine learning classifiers. Finally, a nomogram-based scoring system (QCovSML) was constructed using this stacking approach to predict the COVID-19 patients. The cut-off value of the QCovSML system for classifying COVID-19 and Non-COVID patients was 4.8. Six datasets from three different countries were used to externally validate the proposed model to evaluate its generalizability and robustness. The nomogram demonstrated good calibration and discrimination with the area under the curve (AUC) of 0.961 for the internal cohort and average AUC of 0.967 for all external validation cohort, respectively. The external validation shows an average weighted precision, sensitivity, F1-score, specificity, and overall accuracy of 92.02%, 95.59%, 93.73%, 90.54%, and 93.34%, respectively.
  15. Ahmed S, Rahman T, Ripon MSH, Rashid HU, Kashem T, Md Ali MS, et al.
    Nutrients, 2021 Dec 17;13(12).
    PMID: 34960076 DOI: 10.3390/nu13124521
    Diet is a recognized risk factor and cornerstone for chronic kidney disease (CKD) management; however, a tool to assess dietary intake among Bangladeshi dialysis patients is scarce. This study aims to validate a prototype Bangladeshi Hemodialysis Food Frequency Questionnaire (BDHD-FFQ) against 3-day dietary recall (3DDR) and corresponding serum biomarkers. Nutrients of interest were energy, macronutrients, potassium, phosphate, iron, sodium and calcium. The BDHD-FFQ, comprising 132 food items, was developed from 606 24-h recalls and had undergone face and content validation. Comprehensive facets of relative validity were ascertained using six statistical tests (correlation coefficient, percent difference, paired t-test, cross-quartiles classification, weighted kappa, and Bland-Altman analysis). Overall, the BDHD-FFQ showed acceptable to good correlations (p < 0.05) with 3DDR for the concerned nutrients in unadjusted and energy-adjusted models, but this correlation was diminished when adjusted for other covariates (age, gender, and BMI). Phosphate and potassium intake, estimated by the BDHD-FFQ, also correlated well with the corresponding serum biomarkers (p < 0.01) when compared to 3DDR (p > 0.05). Cross-quartile classification indicated that <10% of patients were incorrectly classified. Weighted kappa statistics showed agreement with all but iron. Bland-Altman analysis showed positive mean differences were observed for all nutrients when compared to 3DDR, whilst energy, carbohydrates, fat, iron, sodium, and potassium had percentage data points within the limit of agreement (mean ± 1.96 SD), above 95%. In summary, the BDHD-FFQ demonstrated an acceptable relative validity for most of the nutrients as four out of the six statistical tests fulfilled the cut-off standard in assessing dietary intake of CKD patients in Bangladesh.
  16. Ramli AS, Selvarajah S, Daud MH, Haniff J, Abdul-Razak S, Tg-Abu-Bakar-Sidik TM, et al.
    BMC Fam Pract, 2016 11 14;17(1):157.
    PMID: 27842495
    BACKGROUND: The chronic care model was proven effective in improving clinical outcomes of diabetes in developed countries. However, evidence in developing countries is scarce. The objective of this study was to evaluate the effectiveness of EMPOWER-PAR intervention (based on the chronic care model) in improving clinical outcomes for type 2 diabetes mellitus using readily available resources in the Malaysian public primary care setting.

    METHODS: This was a pragmatic, cluster-randomised, parallel, matched pair, controlled trial using participatory action research approach, conducted in 10 public primary care clinics in Malaysia. Five clinics were randomly selected to provide the EMPOWER-PAR intervention for 1 year and another five clinics continued with usual care. Patients who fulfilled the criteria were recruited over a 2-week period by each clinic. The obligatory intervention components were designed based on four elements of the chronic care model i.e. healthcare organisation, delivery system design, self-management support and decision support. The primary outcome was the change in the proportion of patients achieving HbA1c 
  17. Al-Samman AM, Azmi MH, Rahman TA, Khan I, Hindia MN, Fattouh A
    PLoS One, 2016;11(12):e0164944.
    PMID: 27992445 DOI: 10.1371/journal.pone.0164944
    This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
  18. Hindia MN, Rahman TA, Ojukwu H, Hanafi EB, Fattouh A
    PLoS One, 2016;11(5):e0155077.
    PMID: 27152423 DOI: 10.1371/journal.pone.0155077
    As the enterprise of the "Internet of Things" is rapidly gaining widespread acceptance, sensors are being deployed in an unrestrained manner around the world to make efficient use of this new technological evolution. A recent survey has shown that sensor deployments over the past decade have increased significantly and has predicted an upsurge in the future growth rate. In health-care services, for instance, sensors are used as a key technology to enable Internet of Things oriented health-care monitoring systems. In this paper, we have proposed a two-stage fundamental approach to facilitate the implementation of such a system. In the first stage, sensors promptly gather together the particle measurements of an android application. Then, in the second stage, the collected data are sent over a Femto-LTE network following a new scheduling technique. The proposed scheduling strategy is used to send the data according to the application's priority. The efficiency of the proposed technique is demonstrated by comparing it with that of well-known algorithms, namely, proportional fairness and exponential proportional fairness.
  19. Al-Samman AM, Rahman TA, Azmi MH, Hindia MN, Khan I, Hanafi E
    PLoS One, 2016 Sep 21;11(9):e0163034.
    PMID: 27654703 DOI: 10.1371/journal.pone.0163034
    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links