Displaying all 6 publications

Abstract:
Sort:
  1. Rathore C, Rathbone MJ, Chellappan DK, Tambuwala MM, Pinto TJA, Dureja H, et al.
    Expert Opin Drug Deliv, 2020 04;17(4):479-494.
    PMID: 32077770 DOI: 10.1080/17425247.2020.1730808
    Introduction: Thymoquinone (TQ), 2-isopropyl-5-methylbenzo-1, 4-quinone, the main active constituent of Nigella sativa (NS) plant, has been proven to be of great therapeutic aid in various in vitro and in vivo conditions. Despite the promising therapeutic activities of TQ, this molecule is not yet in the clinical trials, restricted by its poor biopharmaceutical properties including photo-instability.Area covered: This review compiles the different types of polymeric and lipidic nanocarriers (NCs), encapsulating TQ for their improved oral bioavailability, and augmented in vitro and in vivo efficacy, evidenced on various pathologies. Furthermore, we provide a comprehensive overview of TQ in relation to its encapsulation approaches advancing the delivery and improving the efficacy of TQ.Expert opinion: TQ was first identified in the essential oil of Nigella sativa L. black seed. TQ has not been used in formulations because it is a highly hydrophobic drug having poor aqueous solubility. To deal with the poor physicochemical problems associated with TQ, various NCs encapsulating TQ have been tried in the past. Nevertheless, these NCs could be impending in bringing forth this potential molecule to clinical reality. This will also be beneficial for a large research community including pharmaceutical & biological sciences and translational researchers.
  2. Vihal S, Pundir S, Rathore C, Ranjan Lal U, Gupta G, Kumar Singh S, et al.
    Curr Drug Deliv, 2024 Jul 02.
    PMID: 38956909 DOI: 10.2174/0115672018246645231019131748
    BACKGROUND: The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone ( < 15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions.

    AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.

    OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.

    METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.

    RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).

    CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.

  3. Bisht A, Hemrajani C, Upadhyay N, Nidhi P, Rolta R, Rathore C, et al.
    Ther Deliv, 2022 Jan;13(1):13-29.
    PMID: 34842461 DOI: 10.4155/tde-2021-0059
    Aim: Azelaic acid (AzA), a comedolytic, antibacterial, anti-inflammatory anti-melanogenic agent, prescribed against acne vulgaris is safe on skin. Its combination with another widely used anti-acne agent, tea tree oil (EO) whose delivery is limited by volatility, instability and lipophilicity constraints was attempted. Method: Solvent injection was used to prepare AzA-EO integrated ethosomes. Result: Ethosomes were transformed into carbopol hydrogel, which exhibited pseudo-plastic properties with appreciable firmness, work of shear, stickiness and work of adhesion. The hydrogel showed better permeation and retention characteristics vis-a-vis commercial formulation (AzidermTM), when evaluated in Wistar rat skin. Further, ethosome hydrogel composite was better tolerated with no side effects. Conclusion: The findings suggests that the aforementioned strategy could be a potential treatment used for acne management.
  4. Negi P, Gautam S, Sharma A, Rathore C, Sharma L, Upadhyay N, et al.
    Ther Deliv, 2022 Feb;13(2):81-93.
    PMID: 35075915 DOI: 10.4155/tde-2021-0062
    Background: Chebulinic acid (CA), a component in Terminalia chebula, exhibits antiulcer activity, but has poor aqueous solubility. Raft-forming systems incorporating solid dispersions (SDs) of CA, were developed to overcome its poor biopharmaceutical properties and to prolong the gastric residence time for maximum activity. Methods: SDs were formulated by a solvent evaporation method using Eudragit EPO. Raft formulations consisted of sodium alginate as a polymer. Results: Release of CA in the dissolution medium was 40%, whereas SDs showed 95.45% release. The CA raft system (20 mg/kg) showed curative efficacy in an alcohol-induced gastric ulcer model and increased protection when compared with omeprazole (10 mg/kg) and CA suspension (20 mg/kg). Conclusion: These studies demonstrated SD raft systems to be a promising approach for antiulcer therapy by CA.
  5. Bisht A, Hemrajani C, Rathore C, Dhiman T, Rolta R, Upadhyay N, et al.
    Drug Deliv Transl Res, 2021 Nov 15.
    PMID: 34782995 DOI: 10.1007/s13346-021-01092-4
    Azelaic acid (AzA) is a USFDA bioactive prescribed against acne vulgaris. It possesses delivery challenges like poor aqueous solubility, low skin-penetrability, and dose-dependent side effects, which could be overcome by its synergistic combination with tea tree oil (TTO) as a microemulsion (ME)-based hydrogel composite. AzA-TTO ME was prepared to employ pseudo-ternary phase diagram construction. The best AzA-TTO ME was of uniform size (polydispersity index  90%), and negative zeta potential (-1.42 ± 0.25% mV) values. ME hydrogel composite with optimum rheological and textural attributes showed better permeation, retention, and skin-compliant characteristics, vis-a-vis marketed formulation (Aziderm™) when evaluated in Wistar rat skin. In vitro antibacterial efficacy in bacterial strains, i.e., Staphylococcus aureus, Propionibacterium acne, and Staphylococcus epidermidis, was evaluated employing agar well plate diffusion and broth dilution assay. ME hydrogel has shown an increase in zone of inhibition by two folds and a decrease in minimum inhibitory concentration (MIC) by eightfold against P. acnes vis-a-vis AzA. Finally, ME hydrogel composite exhibited a better reduction in the papule density (93.75 ± 1.64%) in comparison to Aziderm™ 72.69 ± 4.67%) on acne as developed in rats by inducing testosterone. Thus, the developed AzA-TTO ME hydrogel composite promises an efficacious and comparatively safer drug delivery system for the topical therapy of acne vulgaris.
  6. Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, et al.
    Drug Deliv Transl Res, 2023 Jan;13(1):292-307.
    PMID: 35831776 DOI: 10.1007/s13346-022-01193-8
    Thymoquinone (TQ) is an antioxidant, anti-inflammatory, and hepatoprotective compound obtained from the black seed oil of Nigella sativa. However, high hydrophobicity, instability at higher pH levels, photosensitivity, and low oral bioavailability hinder its delivery to the target tissues. A self-nanoemulsifying drug delivery system (SNEDDS) was fabricated using the microemulsification technique to address these issues. Its physicochemical properties, thermodynamic stability studies, drug release kinetics, in vivo pharmacokinetics, and hepatoprotective activity were evaluated. The droplet size was in the nano-range (
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links