Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
  2. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chaibakhsh N, et al.
    Biotechnology, biotechnological equipment, 2014 Nov 02;28(6):1065-1072.
    PMID: 26740782
    Most substrate for esterification has the inherent problem of low miscibility which requires addition of solvents into the reaction media. In this contribution, we would like to present an alternative and feasible option for an efficient solvent-free synthesis of menthyl butyrate using a novel thermostable crude T1 lipase. We investigated the effects of incubation time, temperature, enzyme loading and substrate molar ratio and determined the optimum conditions. The high conversion of menthyl butyrate catalyzed by crude T1 lipase in a solvent-free system is greatly affected by temperature and time of the reaction media. The highest yield of menthyl butyrate was 99.3% under optimized conditions of 60 °C, incubation time of 13.15 h, 2.53 mg, 0.43% (w/w) enzyme to substrate ratio and at molar ratio of butyric anhydride/menthol 2.7:1. Hence, the investigation revealed that the thermostable crude T1 lipase successfully catalyzed the high-yield production of menthyl butyrate in a solvent-free system. The finding suggests that the crude T1 lipase was a promising alternative to overcome shortcomings associated with solvent-assisted enzymatic reactions.
  3. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
  4. Abd Rahman RN, Ali MS, Sugiyama S, Leow AT, Inoue T, Basri M, et al.
    Protein Pept Lett, 2015;22(2):173-9.
    PMID: 25329331
    Geobacillus zalihae sp. nov., which produces a putative thermostable lipase, represents a novel species, with type strain T1. The characterisation of this intrinsically thermostable T1 lipase either physicochemically or structurally is an important task. The crystallisation of T1lipase in space was carried out using a High-Density Protein Crystal Growth (HDPCG) apparatus with the vapour diffusion method, and X-ray diffraction data were collected. The microgravity environment has improved the size and quality of the crystals as compared to earth grown crystal. The effect of microgravity on the crystallisation of T1 lipase was clearly evidenced by the finer atomic details at 1.35 A resolution. Better electron densities were observed overall compared with the Earth-grown crystals, and comparison shows the subtle but distinct conformations around Na(+) ion binding site stabilized via cation-π interactions. This approach could be useful for solving structure and function of lipases towards exploiting its potentials to various industrial applications.
  5. Mohamad Aris SN, Thean Chor AL, Mohamad Ali MS, Basri M, Salleh AB, Raja Abd Rahman RN
    Biomed Res Int, 2014;2014:904381.
    PMID: 24516857 DOI: 10.1155/2014/904381
    Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
  6. Ali MS, Said ZS, Rahman RN, Chor AL, Basri M, Salleh AB
    Int J Mol Sci, 2013 Aug 28;14(9):17608-17.
    PMID: 23989606 DOI: 10.3390/ijms140917608
    Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm³. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P12(1)1 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
  7. Cheong KW, Leow TC, Rahman RN, Basri M, Rahman MB, Salleh AB, et al.
    Appl Biochem Biotechnol, 2011 Jun;164(3):362-75.
    PMID: 21153892 DOI: 10.1007/s12010-010-9140-8
    A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T(m)) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.
  8. Adnani A, Basri M, Chaibakhsh N, Ahangar HA, Salleh AB, Rahman RN, et al.
    Carbohydr Res, 2011 Mar 1;346(4):472-9.
    PMID: 21276966 DOI: 10.1016/j.carres.2010.12.023
    Immobilized Candida antarctica lipase B-catalyzed esterification of xylitol and two fatty acids (capric and caproic acid) were studied in a solvent-free system. The Taguchi orthogonal array method based on three-level-four-variables with nine experiments was applied for the analysis and optimization of the reaction parameters including time, substrate molar ratio, amount of enzyme, and amount of molecular sieve. The obtained conversion was higher in the esterification of xylitol and capric acid with longer chain length. The optimum conditions derived via the Taguchi approach for the synthesis of xylitol caprate and xylitol caproate were reaction time, 29 and 18h; substrate molar ratio, 0.3 and 1.0; enzyme amount, 0.20 and 0.05g, and molecular sieve amount of 0.03g, respectively. The good correlation between the predicted conversions (74.18% and 61.23%) and the actual values (74.05% and 60.5%) shows that the model derived from the Taguchi orthogonal array can be used for optimization and better understanding of the effect of reaction parameters on the enzymatic synthesis of xylitol esters in a solvent-free system.
  9. Abdul Rahman MB, Karjiban RA, Salleh AB, Jacobs D, Basri M, Thean Chor AL, et al.
    Protein Pept Lett, 2009;16(11):1360-70.
    PMID: 20001926
    The stability of biocatalysts is an important criterion for a sustainable industrial operation economically. T1 lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1 (T1 lipase) that was isolated from palm oil mill effluent (POME) in Malaysia. We report here the results of high temperatures molecular dynamics (MD) simulations of T1 lipase in explicit solvent. We found that the N-terminal moiety of this enzyme was accompanied by a large flexibility and dynamics during temperature-induced unfolding simulations which preceded and followed by clear structural changes in two specific regions; the small domain (consisting of helices alpha3 and alpha5, strands beta1 and beta2, and connecting loops) and the main catalytic domain or core domain (consisting of helices alpha6- alpha9 and connecting loops which located above the active site) of the enzyme. The results suggest that the small domain of model enzyme is a critical region to the thermostability of this organism.
  10. Karjiban RA, Basyaruddin M, Rahman A, Salleh AB, Basri M, Zaliha RN, et al.
    Protein Pept Lett, 2010 Jun;17(6):699-707.
    PMID: 19958281
    An all-atom level MD simulation in explicit solvent at high temperature is a powerful technique to increase our knowledge about the structurally important regions modulating thermal stability in thermenzymes. In this respect, two large-sized thermoalkalophilic enzymes from Bacillus stearothermophilus L1 (L1 lipase) and Geobacillus zalihae strain T1 (T1 lipase) are well-established representatives. In this paper, comparative results from temperature-induced MD simulations of both model systems at 300 K, 400 K and 500 K are presented and discussed with respect to identification of highly flexible regions critical to thermostability. From our MD simulation results, specific regions along the L1 lipase and T1 lipase polypeptide chain including the small domain and the main catalytic domain or core domain of both enzymes show a marked increase in fluctuations and dynamics followed by clear structural changes. Overall, the N-terminal moiety of both enzymes and their small domains exhibit hyper-sensitivity to thermal stress. The results appear to propose that these regions are critical in determining of the overall thermal stability of both organisms.
  11. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

  12. Rahman RN, Tejo BA, Basri M, Rahman MB, Khan F, Zain SM, et al.
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):11-20.
    PMID: 15304735
    Candida rugosa lipase was modified via reductive alkylation to increase its hydrophobicity to work better in organic solvents. The free amino group of lysines was alkylated using propionaldehyde with different degrees of modification obtained (49 and 86%). Far-ultraviolet circular dichroism (CD) spectroscopy of the lipase in aqueous solvent showed that such chemical modifications at the enzyme surface caused a loss in secondary and tertiary structure that is attributed to the enzyme unfolding. Using molecular modeling, we propose that in an aqueous environment the loss in protein structure of the modified lipase is owing to disruption of stabilizing salt bridges, particularly of surface lysines. Indeed, molecular modeling and simulation of a salt bridge formed by Lys-75 to Asp-79, in a nonpolar environment, suggests the adoption of a more flexible alkylated lysine that may explain higher lipase activity in organic solvents on alkylation.
  13. Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, et al.
    Protein J, 2018 04;37(2):180-193.
    PMID: 29508210 DOI: 10.1007/s10930-018-9764-z
    The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
  14. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
  15. Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Pearce D, et al.
    Molecules, 2019 Feb 16;24(4).
    PMID: 30781467 DOI: 10.3390/molecules24040715
    In recent years, studies on psychrophilic lipases have been an emerging area of research in the field of enzymology. This study focuses on bacterial strains isolated from anthropogenically-influenced soil samples collected around Signy Island Research Station (South Orkney Islands, maritime Antarctic). Limited information on lipase activities from bacteria isolated from Signy station is currently available. The presence of lipase genes was determined using real time quantification PCR (qPCR) in samples obtained from three different locations on Signy Island. Twenty strains from the location with highest lipase gene detection were screened for lipolytic activities at a temperature of 4 °C, and from this one strain was selected for further examination based on the highest enzymatic activities obtained. Analysis of 16S rRNA sequence data of this strain showed the highest level of sequence similarity (98%) to a Pseudomonas sp. strain also isolated from Antarctica. In order to increase lipase production of this psychrophilic strain, optimisation of different parameters of physical and nutritional factors were investigated. Optimal production was obtained at 10 °C and pH 7.0, at 150 rev/min shaking rate over 36 h incubation.
  16. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RN, et al.
    Biosci Biotechnol Biochem, 2011;75(8):1446-50.
    PMID: 21821960
    The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.
  17. Abd Gani SS, Basri M, Rahman MB, Kassim A, Abd Rahman RN, Salleh AB, et al.
    Biosci Biotechnol Biochem, 2010;74(6):1188-93.
    PMID: 20530909
    Formulations containing engkabang fat and engkabang fat esters, F10 and E15 respectively were prepared using a high-shear homogenizer, followed by a high-pressure homogenizer. Both formulations were stable at room temperature, at 45 degrees C, and after undergoing freeze-thaw cycles. The particle sizes of F10 and E15 after high pressure were 115.75 nm and 148.41 nm respectively. The zeta potentials of F10 and E15 were -36.4 mV and -48.8 mV respectively, while, the pH values of F10 and E15 were 5.59 and 5.81 respectively. The rheology of F10 and E15 showed thixotropy and pseudoplastic behavior respectively. There were no bacteria or fungal growths in the samples. The short-term moisturizing effect on 20 subjects analyzed by analysis of variance (ANOVA), gave p-values of 7.35 x 10(-12) and 2.77 x 10(-15) for F10 and E15 respectively. The hydration of the skins increased after application of F10 and E15 with p-value below 0.05.
  18. Maiangwa J, Hamdan SH, Mohamad Ali MS, Salleh AB, Zaliha Raja Abd Rahman RN, Shariff FM, et al.
    J Mol Graph Model, 2021 06;105:107897.
    PMID: 33770705 DOI: 10.1016/j.jmgm.2021.107897
    Critical to the applications of proteins in non-aqueous enzymatic processes is their structural dynamics in relation to solvent polarity. A pool of mutants derived from Geobacillus zalihae T1 lipase was screened in organic solvents (methanol, ethanol, propanol, butanol and pentanol) resulting in the selection of six mutants at initial screening (A83D/K251E, R21C, G35D/S195 N, K84R/R103C/M121I/T272 M and R106H/G327S). Site-directed mutagenesis further yielded quadruple mutants A83D/M121I/K251E/G327S and A83D/M121I/S195 N/T272 M, both of which had improved activity after incubation in methanol. The km and kcat values of these mutants vary marginally with the wild-type enzyme in the methanol/substrate mixture. Thermally induced unfolding of mutants was accompanied with some loss of secondary structure content. The root mean square deviations (RMSD) and B-factors revealed that changes in the structural organization are intertwined with an interplay of the protein backbone with organic solvents. Spatially exposed charged residues showed correlations between the solvation dynamics of the methanol solvent and the hydrophobicity of the residues. The short distances of the radial distribution function provided the required distances for hydrogen bond formation and hydrophobic interactions. These dynamic changes demonstrate newly formed structural interactions could be targeted and incorporated experimentally on the basis of solvent mobility and mutant residues.
  19. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
  20. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al.
    Environ Geochem Health, 2017 Dec;39(6):1259-1271.
    PMID: 28484873 DOI: 10.1007/s10653-017-9971-0
    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links