Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Ismail NF, Nik Abdul Malik NM, Mohseni J, Rani AM, Hayati F, Salmi AR, et al.
    Jpn J Clin Oncol, 2014 May;44(5):506-11.
    PMID: 24683199 DOI: 10.1093/jjco/hyu024
    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.
  2. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
  3. Mohseni J, Boon Hock C, Abdul Razak C, Othman SN, Hayati F, Peitee WO, et al.
    Gene, 2014 Jan 1;533(1):240-5.
    PMID: 24103480 DOI: 10.1016/j.gene.2013.09.081
    Hyperargininemia is a very rare progressive neurometabolic disorder caused by deficiency of hepatic cytosolic arginase I, resulting from mutations in the ARG1 gene. Until now, some mutations were reported worldwide and none of them were of Southeast Asian origins. Furthermore, most reported mutations were point mutations and a few others deletions or insertions.
  4. Rani AQ, Malueka RG, Sasongko TH, Awano H, Lee T, Yagi M, et al.
    Mol Genet Metab, 2011 Jul;103(3):303-4.
    PMID: 21514860 DOI: 10.1016/j.ymgme.2011.04.002
    In Duchenne muscular dystrophy (DMD), identification of one nonsense mutation in the DMD gene has been considered an endpoint of genetic diagnosis. Here, we identified two closely spaced nonsense mutations in the DMD gene. In a Malaysian DMD patient two nonsense mutations (p.234S>X and p.249Q>X, respectively) were identified within exon 8. The proband's mother carried both mutations on one allele. Multiple mutations may explain the occasional discrepancies between genotype and phenotype in dystrophinopathy.
  5. Sasongko TH, Gunadi, Yusoff S, Atif AB, Fatemeh H, Rani A, et al.
    Brain Dev, 2010 May;32(5):385-9.
    PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008
    The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology.
  6. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
  7. Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA, et al.
    J. Neurogenet., 2013 Jun;27(1-2):11-5.
    PMID: 23438214 DOI: 10.3109/01677063.2012.762580
    We undertook the clinical feature examination and dystrophin analysis using multiplex ligation-dependent probe amplification (MLPA) and direct DNA sequencing of selected exons in a cohort of 35 Malaysian Duchenne/Becker muscular dystrophy (DMD/BMD) patients. We found 27 patients with deletions of one or more exons, 2 patients with one exon duplication, 2 patients with nucleotide deletion, and 4 patients with nonsense mutations (including 1 patient with two nonsense mutations in the same exon). Although most cases showed compliance to the reading frame rule, we found two unrelated DMD patients with an in-frame deletion of the gene. Two novel mutations have been detected in the Dystrophin gene and our results were compatible with other studies where the majority of the mutations (62.8%) are located in the distal hotspot. However, the frequency of the mutations in our patient varied as compared with those found in other populations.
  8. Zakaria WNA, Sasongko TH, Al-Rahbi B, Al-Sowayan N, Ahmad AH, Zakaria R, et al.
    Psychiatr Genet, 2023 Apr 01;33(2):37-49.
    PMID: 36825838 DOI: 10.1097/YPG.0000000000000336
    This study aimed to perform a bibliometric analysis on genetic studies in schizophrenia in the pregenome-wide association studies (GWAS) and post-GWAS era. We searched the literature on genes and schizophrenia using the Scopus database. The documents increased with time, especially after the human genome project and International HapMap Project, with the highest citation in 2008. The top occurrence author keywords were discovered to be different in the pre-GWAS and post-GWAS eras, reflecting the progress of genetic studies connected to schizophrenia. Emerging keywords highlighted a trend towards an application of precision medicine, showing an interplay of environmental exposures as well as genetic factors in schizophrenia pathogenesis, progression, and response to therapy. In conclusion, the gene and schizophrenia literature has grown rapidly after the human genome project, and the temporal variation in the author keywords pattern reflects the trend of genetic studies related to schizophrenia in the pre-GWAS and post-GWAS era.
  9. Marini M, Sasongko TH, Watihayati MS, Atif AB, Hayati F, Gunadi, et al.
    Indian J Med Res, 2012;135:31-5.
    PMID: 22382180
    Genetic diagnosis of spinal muscular atrophy (SMA) is complicated by the presence of SMN2 gene as majority of SMA patients show absence or deletion of SMN1 gene. PCR may amplify both the genes non selectively in presence of high amount of DNA. We evaluated whether allele-specific PCR for diagnostic screening of SMA is reliable in the presence of high amount of genomic DNA, which is commonly used when performing diagnostic screening using restriction enzymes.
  10. Mohseni J, Al-Najjar BO, Wahab HA, Zabidi-Hussin ZA, Sasongko TH
    J Hum Genet, 2016 Sep;61(9):823-30.
    PMID: 27251006 DOI: 10.1038/jhg.2016.61
    Several histone deacetylase inhibitors (HDACis) are known to increase Survival Motor Neuron 2 (SMN2) expression for the therapy of spinal muscular atrophy (SMA). We aimed to compare the effects of suberoylanilide hydroxamic acid (SAHA) and Dacinostat, a novel HDACi, on SMN2 expression and to elucidate their acetylation effects on the methylation of the SMN2. Cell-based assays using type I and type II SMA fibroblasts examined changes in transcript expressions, methylation levels and protein expressions. In silico methods analyzed the intermolecular interactions between each compound and HDAC2/HDAC7. SMN2 mRNA transcript levels and SMN protein levels showed notable increases in both cell types, except for Dacinostat exposure on type II cells. However, combined compound exposures showed less pronounced increase in SMN2 transcript and SMN protein level. Acetylation effects of SAHA and Dacinostat promoted demethylation of the SMN2 promoter. The in silico analyses revealed identical binding sites for both compounds in HDACs, which could explain the limited effects of the combined exposure. With the exception on the effect of Dacinostat in Type II cells, we have shown that SAHA and Dacinostat increased SMN2 transcript and protein levels and promoted demethylation of the SMN2 gene.
  11. Sasongko TH, Ismail NF, Nik Mohd Ariff NA, Zabidi-Hussin ZA
    Jpn J Clin Oncol, 2014 Nov;44(11):1130.
    PMID: 25320338 DOI: 10.1093/jjco/hyu157
  12. Islam MA, Alam F, Khalil MI, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(20):2926-46.
    PMID: 26951101
    Globally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy.
  13. Alam F, Islam MA, Gan SH, Mohamed M, Sasongko TH
    Curr Pharm Des, 2016;22(28):4398-419.
    PMID: 27229720
    DNA methylation, a major regulator of epigenetic modifications has been shown to alter the expression of genes that are involved in aspects of glucose metabolism such as glucose intolerance, insulin resistance, β-cell dysfunction and other conditions, and it ultimately leads to the pathogenesis of type 2 diabetes mellitus (T2DM). Current evidences indicate an association of DNA methylation with T2DM. This review provides an overview of how various factors play crucial roles in T2DM pathogenesis and how DNA methylation interacts with these factors. Additionally, an update on current techniques of DNA methylation analysis with their pros and cons is provided as a basis for the adoption of suitable techniques in future DNA methylation research towards better management of T2DM. To elucidate the mechanistic relationship between vital environmental factors and the development of T2DM, a better understanding of the changes in gene expression associated with DNA methylation at the molecular level is still needed.
  14. Sasongko TH, Ismail NF, Nik Abdul Malik NM, Zabidi-Hussin ZA
    Orphanet J Rare Dis, 2015;10:95.
    PMID: 26259610 DOI: 10.1186/s13023-015-0317-7
    Rapamycin has gained significant attention for its potential activity in reducing the size of TSC-associated tumors, thus providing alternative to surgery. This study aimed at determining the efficacy of rapamycin and rapalogs for reducing the size of TSC-associated solid tumors in patients with Tuberous Sclerosis Complex (TSC).
  15. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
  16. Islam MA, Wong KK, Sasongko TH, Gan SH, Wong JS
    Eur J Rheumatol, 2016 Sep;3(3):139-141.
    PMID: 27733946 DOI: 10.5152/eurjrheum.2015.0068
    Here we present a case report of three familial primary antiphospholipid syndrome (PAPS) patients from Malaysia. The three familial patients comprised two females and one male with a mean age of 26.3 years. The first diagnosis was made between 2005 and 2009, and all patients demonstrated deep vein thrombosis, high levels of IgM and IgG anticardiolipin antibodies, and received warfarin treatment international normalized ratio (INR) 2.0-3.0. The patients ceased to show clinical symptoms after treatment. Recently (August 2014), we investigated whether the levels of antiphospholipid antibodies remained elevated, and we found that seronegativity occurred in the patients. We suspect that prolonged anticoagulant treatment might be one of the causes of reduced levels of antiphospholipid antibodies in these familial PAPS patients.
  17. Islam MA, Alam F, Cavestro C, Calcii C, Sasongko TH, Levy RA, et al.
    Autoimmun Rev, 2018 Aug;17(8):755-767.
    PMID: 29885542 DOI: 10.1016/j.autrev.2018.01.025
    BACKGROUND: Autoimmunity is believed to play an important causative role in the pathogenesis of epilepsy. There are evidences for the presence of autoantibodies in patients with epilepsy. To date, many studies have assessed the presence of antiphospholipid antibodies (aPLs) in epilepsy patients, though the relationship has been inconclusive.

    AIMS: The aim of this systematic review and meta-analysis was to evaluate the presence of aPLs in epileptic patients as compared to healthy controls.

    METHODS: Five electronic databases (PubMed, Web of Science, Embase, Scopus and Google Scholar) were searched systematically. Study-specific odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using random-effects model. Quality assessment was carried out by using the modified 9-star Newcastle-Ottawa Scale (NOS). L'Abbé plots were generated to visually inspect heterogeneity while publication bias was evaluated via visualization of contour- enhanced funnel plots, and Begg's and Egger's tests.

    RESULTS: Based on the inclusion criteria, 14 studies were selected involving 1248 epilepsy patients and 800 healthy controls. The majority of epilepsy was categorised as generalised or partial and none had comorbidity with autoimmune diseases. Significant presence of both anticardiolipin (aCL) antibodies (OR: 5.16, 95% CI: 3.21-8.28, p 
  18. Asiful Islam M, Alam F, Kamal MA, Gan SH, Wong KK, Sasongko TH
    Curr Pharm Des, 2017;23(11):1598-1609.
    PMID: 27875971 DOI: 10.2174/1381612823666161122142950
    Nonsense mutations contribute to approximately 10-30% of the total human inherited diseases via disruption of protein translation. If any of the three termination codons (UGA, UAG and UAA) emerges prematurely [known as premature termination codon (PTC)] before the natural canonical stop codon, truncated nonfunctional proteins or proteins with deleterious loss or gain-of-function activities are synthesized, followed by the development of nonsense mutation-mediated diseases. In the past decade, PTC-associated diseases captured much attention in biomedical research, especially as molecular therapeutic targets via nonsense suppression (i.e. translational readthrough) regimens. In this review, we highlighted different treatment strategies of PTC targeting readthrough therapeutics including the use of aminoglycosides, ataluren (formerly known as PTC124), suppressor tRNAs, nonsense-mediated mRNA decay, pseudouridylation and CRISPR/Cas9 system to treat PTC-mediated diseases. In addition, as thrombotic disorders are a group of disease with major burdens worldwide, 19 potential genes containing a total of 705 PTCs that cause 21 thrombotic disorders have been listed based on the data reanalysis from the 'GeneCards® - Human Gene Database' and 'Human Gene Mutation Database' (HGMD®). These PTC-containing genes can be potential targets amenable for different readthrough therapeutic strategies in the future.
  19. Abdo Qaid EY, Zulkipli NN, Zakaria R, Ahmad AH, Othman Z, Muthuraju S, et al.
    Int J Neurosci, 2021 May;131(5):482-488.
    PMID: 32202188 DOI: 10.1080/00207454.2020.1746308
    Hypoxia has been associated with cognitive impairment. Many studies have investigated the role of mTOR signalling pathway in cognitive functions but its role in hypoxia-induced cognitive impairment remains controversial. This review aimed to elucidate the role of mTOR in the mechanisms of cognitive impairment that may pave the way towards the mechanistic understanding and therapeutic intervention of hypoxia-induced cognitive impairment. mTORC1 is normally regulated during mild or acute hypoxic exposure giving rise to neuroprotection, whereas it is overactivated during severe or chronic hypoxia giving rise to neuronal cells death. Thus, it is worth exploring the possibility of maintaining normal mTORC1 activity and thereby preventing cognitive impairment during severe or chronic hypoxia.
  20. Islam MA, Alam F, Kamal MA, Wong KK, Sasongko TH, Gan SH
    CNS Neurol Disord Drug Targets, 2016;15(10):1253-1265.
    PMID: 27658514 DOI: 10.2174/1871527315666160920122750
    Neurological manifestations or disorders associated with the central nervous system are among the most common and important clinical characteristics of antiphospholipid syndrome (APS). Although in the most recently updated (2006) APS classification criteria, the neurological manifestations encompass only transient ischemic attack and stroke, diverse 'non-criteria' neurological disorders or manifestations (i.e., headache, migraine, bipolar disorder, transverse myelitis, dementia, chorea, epileptic seizures, multiple sclerosis, psychosis, cognitive impairment, Tourette's syndrome, parkinsonism, dystonia, transient global amnesia, obsessive compulsive disorder and leukoencephalopathy) have been observed in APS patients. To date, the underlying mechanisms responsible for these abnormal neurological manifestations in APS remain unclear. In vivo experiments and human observational studies indicate the involvement of thrombotic events and/or high titers of antiphospholipid antibodies in the neuro-pathogenic cascade of APS. Although different types of neurologic manifestations in APS patients have successfully been treated with therapies involving anti-thrombotic regimens (i.e., anticoagulants and/or platelet antiaggregants), antineuralgic drugs (i.e., antidepressants, antipsychotics and antiepileptics) and immunosuppressive drugs alone or in combination, evidence-based guidelines for the management of the neurologic manifestations of APS remain unavailable. Therefore, further experimental, clinical and retrospective studies with larger patient cohorts are warranted to elucidate the pathogenic linkage between APS and the central nervous system in addition to randomized controlled trials to facilitate the discovery of appropriate medications for the 'non-criteria' neurologic manifestations of APS.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links