Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Sharma JN, Buchanan WW
    Exp. Toxicol. Pathol., 1994 Dec;46(6):421-33.
    PMID: 7703672 DOI: 10.1016/S0940-2993(11)80053-9
    Excessive release of kinin (BK) in the synovial fluid can produce oedema, pain and loss of functions due to activation of B1 and B2 kinin receptors. Activation of the kinin forming system could be mediated via injury, trauma, coagulation pathways (Hageman factor and thrombin) and immune complexes. The activated B1 and B2 receptors might cause release of other powerful non-cytokine and cytokine mediators of inflammation, e.g., PGE2, PGI2, LTs, histamine, PAF, IL-1 and TNF, derived mainly from polymorphonuclear leukocytes, macrophages, endothelial cells and synovial tissue. These mediators are capable of inducing bone and cartilage damage, hypertrophic synovitis, vessel proliferation, inflammatory cell migration and, possibly, angiogenesis in pannus formation. These pathological changes, however, are not yet defined in the human model of chronic inflammation. The role of kinins and their interacting inflammatory mediators would soon start to clarify the detailed questions they revealed in clinical and experimental models of chronic inflammatory diseases. Several B1 and B2 receptor antagonists are being synthesized in an attempt to study the molecular functions of kinins in inflammatory processes, such as rheumatoid arthritis, periodontitis, inflammatory diseases of the gut and osteomyelitis. Future development of specific potent and stable B1 and B2 receptor antagonists or combined B1 and B2 antagonists with y-IFN might serve as a pharmacological basis for more effective treatment of joint inflammatory and related diseases.
  2. Dey YN, Wanjari MM, Srivastava B, Kumar D, Sharma D, Sharma J, et al.
    Heliyon, 2020 May;6(5):e04023.
    PMID: 32509986 DOI: 10.1016/j.heliyon.2020.e04023
    The tubers of Amorphophallus paeoniifolius (Elephant foot yam), principally consumed as crop food and vegetables, are used in ethno-medicinal practices in mitigation of constipation and piles. Hence, present study evaluated the effect of tubers of A. paeoniifolius and its active constituents glucomannan and betulinic acid on experimentally-induced constipation. The tuber and its extracts were standardized as per Ayurvedic Pharmacopoeia of India and physicochemical constants were found within the pharmacopoeial limit. HPTLC fingerprint profile of extracts has been developed using suitable mobile phase. Methanolic extract was subjected to column chromatography. The isolated phytoconstituents were characterized by FT-IR, NMR and MS and identified as betulinic acid and β-sitosterol. Functional constipation was induced in rats by oral administration of loperamide (3 mg/kg) for first 3 consecutive days. The rats were orally treated with methanolic and aqueous tuber extracts in the doses of 125, 250 and 500 mg/kg, glucomannan (300 mg/kg) and betulinic acid (1.5 mg/kg) for 7 days. The parameters viz. number of stools, wet weight of stools and moisture content of stools and intestinal transit were studied. Treatment with tuber extracts, glucomannan and betulinic acid showed significant (p < 0.05) increase in fecal parameters and intestinal transit in constipated rats. The effects were comparable to standard laxative drug, sodium picosulfate (5 mg/kg, orally). The results indicated that tuber extracts and its active constituents showed laxative effect and relieved constipation. It is concluded that tuber of A. paeoniifolius exhibited beneficial effect in functional constipation possibly through its laxative action. The study validates its ethno-medicinal use in correction of constipation. The principal constituents, betulinic acid and glucomannan in tuber extracts might have played important role in relieving the constipation.
  3. Sharma JN, Srivastava KC, Gan EK
    Pharmacology, 1994 Nov;49(5):314-8.
    PMID: 7862743
    This study examined the effect of eugenol and ginger oil on severe chronic adjuvant arthritis in rats. Severe arthritis was induced in the right knee and right paw of male Sprague-Dawley rats by injecting 0.05 ml of a fine suspension of dead Mycobacterium tuberculosis bacilli in liquid paraffin (5 mg/ml). Eugenol (33 mg/kg) and ginger oil (33 mg/kg), given orally for 26 days, caused a significant suppression of both paw and joint swelling. These findings suggest that eugenol and ginger oil have potent antiinflammatory and/or antirheumatic properties.
  4. Akbar A, Sharma JN, Yusof AP, Gan EK
    Int J Tissue React, 1998;20(3):95-100.
    PMID: 9894182
    We studied the effect of indomethacin, a cyclooxygenase inhibitor, on bradykinin-induced responses in the intact and denuded epithelium of the isolated tracheal smooth muscle in guinea pigs. Epithelium removal alone did not alter the responsiveness to bradykinin. Indomethacin (2.8 microM) enhanced the sensitivity to bradykinin of both intact and denuded preparations. This finding suggests that the tracheal epithelial may have no protective effect on the contractile responses induced by bradykinin. This may be due to the presence of high amounts of bradykinin-inactivating enzymes in the tracheal smooth muscle. Indomethacin-medicated potentiation caused by bradykinin in epithelium intact and denuded preparations may be an indication of removal of the bronchodilator prostaglandin biosynthesis. The significance of these findings is discussed.
  5. Crous PW, Carnegie AJ, Wingfield MJ, Sharma R, Mughini G, Noordeloos ME, et al.
    Persoonia, 2019 Jun;42:291-473.
    PMID: 31551622 DOI: 10.3767/persoonia.2019.42.11
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.
  6. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
  7. Sharma JN, Kesavarao U
    Immunopharmacology, 1996 Jun;33(1-3):341-3.
    PMID: 8856181 DOI: 10.1016/0162-3109(96)00104-x
    This study examined the effects of streptozotocin-induced diabetes on blood pressure and cardiac tissue kallikrein levels in WKYR and SHR. Streptozotocin-induced diabetes caused significant (p < 0.001) increase in SBP and DBP in WKYR and SHR as compared with their respective controls. We also observed that the active cardiac tissue kallikrein levels reduced greatly (p < 0.001) in diabetic WKYR and SHR than the normal rats. These findings suggest for the first time that the cardiac tissue kallikrein formation may have a greater role in the regulation of blood pressure and cardiac function.
  8. Sharma JN, Mohsin SS
    Exp Pathol, 1990;38(2):73-96.
    PMID: 1971600
    In recent years, numerous agents have been recognized as inflammatory mediators. In this review, however, we discuss only those having direct relevance to human inflammatory diseases These mediators are clinically important due to their proinflammatory properties such as vasodilatation, increased vascular permeability, pain and chemotaxis. They may lead to the fifth cardinal sign, loss of function in inflammatory diseases. Agonists and non-specific antagonists are used as pharmacological tools to investigate the inflammatory role of PGs, LTs, PAF, IL-1, histamine, complement, SP, PMN-leukocytes, and kallikrein-kininogen-kinin systems. Unfortunately, no compound is known which concurrently abolishes all actions and interactions of inflammatory mediators. Therefore it would be highly useful to promote efforts in developing selective and competitive antagonists against proinflammatory actions of these chemical mediators. This may help to a better understanding of the pathogenesis of inflammatory reactions, and it may also be useful for the therapy of inflammatory diseases.
  9. Sharma JN, Amrah SS, Noor AR
    Pharmacology, 1995 Jun;50(6):363-9.
    PMID: 7568335
    The present investigation evaluated the effects of aprotinin, an inhibitor of kallikrein, on blood pressure responses, heart rate, and duration of hypotension induced by acute administration of captopril and enalapril (angiotensin-converting enzyme inhibitors) in anaesthetized spontaneously hypertensive rats. Captopril (20 mg/kg) and enalapril (20 mg/kg) administered intravenously caused a significant (p < 0.001) fall in systolic and diastolic blood pressures in the absence of aprotinin. In contrast, captopril (20 mg/kg) and enalapril (20 mg/kg) failed (p > 0.05) to cause a fall in systolic and diastolic blood pressures in the presence of aprotinin (2 mg/kg). Captopril and enalapril were able to significantly reduce the heart rate (p < 0.05 and p < 0.001) in the presence as well as in the absence of aprotinin. The duration of hypotension produced by captopril and enalapril was abolished significantly (p < 0.001) in the presence of aprotinin. These findings may suggest that captopril and enalapril caused hypotension via the kallikrein pathway, since the kallikrein inhibitor aprotinin can antagonize the hypotensive responses of these agents. Thus, kallikrein may be an independent mediator in the regulation of blood pressure.
  10. Sharma JN, Uma K, Noor AR, Rahman AR
    Gen. Pharmacol., 1996 Jan;27(1):55-63.
    PMID: 8742494
    1. The kallikrein-kinin system has a significant role in regulating arterial blood pressure. 2. Reduced formation of the kinin compontents may cause hypertensive diseases. This is because of the fact that this system is responsible for vasodilatation, reduction in total peripheral resistance, natriuresis, diuresis, increasing renal blood flow and releasing various vasodilator agents. 3. Reduced kinin-kallikrein generation in hypertensive subjects may also be associated with genetic and environmental defects. 4. The kallikrein-kinin system when administered to hypertensive patients can lower their raised blood pressure to normotensive levels. 5. The mode of action of angiotensin-converting enzyme inhibitors principally may be dependent on the kinin system protection.
  11. Lee CC, Kwa ALH, Apisarnthanarak A, Feng JY, Gluck EH, Ito A, et al.
    Clin Chem Lab Med, 2020 11 26;58(12):1983-1991.
    PMID: 31926074 DOI: 10.1515/cclm-2019-1122
    Introduction Recently, an expert consensus on optimal use of procalcitonin (PCT)-guided antibiotic stewardship was published focusing mainly on Europe and the United States. However, for Asia-Pacific countries, recommendations may need adaptation due to differences in types of infections, available resources and standard of clinical care. Methods Practical experience with PCT-guided antibiotic stewardship was discussed among experts from different countries, reflecting on the applicability of the proposed Berlin consensus algorithms for Asia-Pacific. Using a Delphi process, the group reached consensus on two PCT algorithms for the critically ill and the non-critically ill patient populations. Results The group agreed that the existing evidence for PCT-guided antibiotic stewardship in patients with acute respiratory infections and sepsis is generally valid also for Asia-Pacific countries, in regard to proposed PCT cut-offs, emphasis on diagnosis, prognosis and antibiotic stewardship, overruling criteria and inevitable adaptations to clinical settings. However, the group noted an insufficient database on patients with tropical diseases currently limiting the clinical utility in these patients. Also, due to lower resource availabilities, biomarker levels may be measured less frequently and only when changes in treatment are highly likely. Conclusions Use of PCT to guide antibiotic stewardship in conjunction with continuous education and regular feedback to all stakeholders has high potential to improve the utilization of antibiotic treatment also in Asia-Pacific countries. However, there is need for adaptations of existing algorithms due to differences in types of infections and routine clinical care. Further research is needed to understand the optimal use of PCT in patients with tropical diseases.
  12. Akbar A, Sharma JN
    Pharmacol Res, 1992 Apr;25(3):279-86.
    PMID: 1518772
    We have investigated the effect of indomethacin on histamine- and acetylcholine (ACh)-induced responses in the intact and denuded epithelium of guinea pig isolated tracheal smooth muscle. Epithelium removal resulted in increased responsiveness to ACh and histamine. Indomethacin (2.8 microM) enhanced the sensitivity of both intact and denuded preparations to histamine and ACh. These findings suggest that the tracheal epithelium of guinea pig plays a protective role against bronchoconstrictors, such as ACh and histamine. Furthermore, indomethacin-mediated hyperresponsiveness caused by these agonists in epithelium denuded preparations might be a reflection of removal of prostaglandin (PG) biosynthesis. A similar process of interaction in indomethacin-treated asthmatic patients (with damaged airway epithelium) might take place. The significance of these findings is discussed.
  13. Sharma JN
    Gen. Pharmacol., 1993 Mar;24(2):267-74.
    PMID: 8387049
    1. Bradykinin and related kinins may act on four types of receptors designated as B1, B2, B3 and B4. It seems that the B2 receptors are most commonly found in various vascular and non-vascular smooth muscles, whereas B1 receptors are formed in vitro during trauma, and injury, and are found in bone tissues. 2. These BK receptors are involved in the regulations of various physiological and pathological processes. 3. The mode of kinin actions are based upon the interactions between the kinin and their specific receptors, which can lead to activation of several second-messenger systems. 4. Recently, numerous BK receptors antagonists have been synthesized with prime aim to treat diseases caused by excessive kinin production. 5. These diseases are RA, inflammatory diseases of the bowel, asthma, rhinitis and sore throat, allergic reactions, pain, inflammatory skin disorders, endotoxin and anaphylactic shock and coronary heart diseases. 6. On the other hand, BK receptor antagonists could be contraindicated in hypertension, since these drugs may antagonize the antihypertensive therapy and/or may trigger the hypertensive crisis. 7. It is worth suggesting that the BK receptor agonists might be useful antihypertensive drugs.
  14. Sharma JN
    Eur J Rheumatol Inflamm, 1991;11(2):30-7.
    PMID: 1365470
    Components of the kallikrein-kininogen-kinin are activated in response to noxious stimuli (chemical, physical or bacterial), which may lead to excessive release of kinins in the synovial joints that may produce inflammatory joint disease. The inflammatory changes observed in synovial tissue may be due to activation of B2 receptors. Kinins also stimulate the synthesis of other pro-inflammatory agents (PGs, LTs, histamine, EDRF, PGI2 and PAF) in the inflamed joint. B2 receptor antagonists may provide valuable agents as new analgesic drugs. Further, it is suggested that substances directed to reduce the activation of KKS may provide a pharmacological basis for the synthesis of novel anti-rheumatic or anti-inflammatory drugs.
  15. Sharma JN
    Exp Pathol, 1991;43(1-2):47-50.
    PMID: 1783046 DOI: 10.1016/s0232-1513(11)80141-6
    The mechanisms causing inflammation in rheumatoid arthritis (RA) are not yet clearly known. They may be associated with different types of inflammatory cells and probably numerous mediators (SHARMA and MOHSIN 1990). Nowadays, the platelet activating factor (PAF) is discussed as an important mediator in RA.
  16. Sharma JN
    Gen. Pharmacol., 1988;19(2):177-87.
    PMID: 3280399
    The evidence presented here suggests strongly that the kallikreins-kininogens-kinins-kininase II system has most significant role in regulation of systemic BP. This system is involved in mediation and modulation of renin-angiotensin-aldosterone, PGS and vasopressin in the regulation of sodium water balance, renal hemodynamic and BP. Therefore, reduction in the kinin-formation due to high production of kininase II, and lower formation of tissue kallikrein might result in an increased release of vasoconstrictor angiotensin II on one side, and on the other side much reduced production of PGE, vasodilator. These changes might lead to deranged vascular smooth muscle structures and cell membrane functions, retention of sodium and water, increased plasma volume, and renovascular constriction. These physiological defects might result in the development of essential hypertension (Fig. 4). Although, it is possible now to treat hypertensive conditions with tissue kallikrein and kininase II inhibitors. These discoveries have opened up new vistas to research on the pharmacological applications of kallikreins-kininogens-kinins-kininases in human diseases.
  17. Sharma JN
    Agents Actions Suppl., 1992;38 ( Pt 3):343-61.
    PMID: 1334358
    Kinins are potent mediators of rheumatoid inflammation. The components of the kinin-forming system are hyperactive in RA. Excessive release of kinins in the synovial fluid can produce oedema, pain and loss of functions due to activation of B1 and B2 receptors. These receptors could be stimulated via injury, trauma, coagulation pathways (Hageman factor and thrombin) and immune complexes. The activated B1 and B2 receptors might cause release of other powerful non-cytokines and cytokines mediators of inflammation, for example, PGE2, PGI2, LTs, histamine, PAF, IL-1 and TNF derived mainly from polymorphonuclear leukocytes, macrophages, endothelial cells and synovial tissue. These mediators are capable of inducing bone and cartilage damage, hypertrophic synovitis, vessels proliferation, inflammatory cells migration, and possibly angiogenesis in pannus formation. These pathological changes, however, are not yet defined in human model of chronic inflammation (RA). Hence, the role of kinin and its interacting inflammatory mediators would soon start to clarify the detailed questions they revealed in clinical and experimental models of chronic inflammatory joint diseases. Several B1 and B2 receptor antagonists are being synthesized in an attempt to study the molecular functions of kinins in inflammatory processes (RA, periodontitis and osteomyelitis), and they represent and important area for continued research in rheumatology. Future development of specific, potent and stable B1 and B2 receptor antagonists or combined B1 and B2 antagonists with y-IFN might serve as pharmacological basis of more effective rationally-based therapies for RA. This may lead to significant advances in our knowledge of the mechanisms and therapeutics of rheumatic diseases.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links