Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Alkhadher SAA, Sidek LM, Zakaria MP, A Al-Garadi M, Suratman S
    Environ Geochem Health, 2024 Mar 15;46(4):140.
    PMID: 38488953 DOI: 10.1007/s10653-024-01916-5
    Organic pollution continues to be an important worldwide obstacle for tackling health and environmental concerns that require ongoing and prompt response. To identify the LAB content levels as molecular indicators for sewage pollution, surface sediments had obtained from the South region of Malaysia. The origins of the LABs were identified using gas chromatography-mass spectrometry (GC-MS). ANOVA and a Pearson correlation coefficient at p S) chains are used to identify the effectiveness of wastewater treatments. According to statistical analysis, the range of LAB level at the stations was 67.4 to 188.7 ng g-1dw. A significant difference was observed between LAB homologs (p 
  2. Magam SM, Masood N, Alkhadher SAA, Alanazi TYA, Zakaria MP, Sidek LM, et al.
    Environ Geochem Health, 2024 Jan 16;46(2):38.
    PMID: 38227164 DOI: 10.1007/s10653-023-01828-w
    The seasonal variation of petroleum pollution including n-alkanes in surface sediments of the Selangor River in Malaysia during all four climatic seasons was investigated using GC-MS. The concentrations of n-alkanes in the sediment samples did not significantly correlate with TOC (r = 0.34, p > 0.05). The concentrations of the 29 n-alkanes in the Selangor River ranged from 967 to 3711 µg g-1 dw, with higher concentrations detected during the dry season. The overall mean per cent of grain-sized particles in the Selangor River was 85.9 ± 2.85% sand, 13.5 ± 2.8% clay, and 0.59 ± 0.34% gravel, respectively. n-alkanes are derived from a variety of sources, including fresh oil, terrestrial plants, and heavy/degraded oil in estuaries. The results of this study highlight concerns and serve as a warning that hydrocarbon contamination is affecting human health. As a result, constant monitoring and assessment of aliphatic hydrocarbons in coastal and riverine environments are needed.
  3. Hee YY, Hanif NM, Weston K, Latif MT, Suratman S, Rusli MU, et al.
    Sci Total Environ, 2023 Dec 01;902:166153.
    PMID: 37562616 DOI: 10.1016/j.scitotenv.2023.166153
    Atmospheric microplastic transport is an important delivery pathway with the deposition of microplastics to ecologically important regions raising environmental concerns. Investigating atmospheric delivery pathways and their deposition rates in different ecosystems is necessary to understanding its global impact. In this study, atmospheric deposition was collected at three sites in Malaysia, two urban and one pristine, covering the Northeast and Southwest monsoons to quantify the role of this pathway in Southeast Asia. Air mass back trajectories showed long-range atmospheric transport of microplastics to all sites with atmospheric deposition varying from 114 to 689 MP/m2/day. For the east coast of Peninsular Malaysia, monsoonal season influenced microplastic transport and deposition rate with peak microplastic deposition during the Northeast monsoon due to higher wind speed. MP morphology combined with size fractionation and plastic type at the coastal sites indicated a role for long-range marine transport of MPs that subsequently provided a local marine source to the atmosphere at the coastal sites.
  4. Alkhadher SAA, Suratman S, Mohd Sallan MIB
    J Environ Manage, 2023 Nov 01;345:118464.
    PMID: 37454570 DOI: 10.1016/j.jenvman.2023.118464
    The spatial and temporal distributions of trace metals in dissolved forms mainly result from anthropogenic and lithogenic contributions. Surface water samples (∼0.5 m) were collected monthly at respective stations from Setiu Wetland. In this study, the behaviour of trace metals in the dissolved phases along the water column from sampling sites in the Setiu Wetland, Malaysia was investigated. In addition, dissolved organic carbon (DOC) and physical parameters such as salinity, temperature, pH and dissolved oxygen (DO) of the surface water were measured in order to evaluate the relationship between trace metals fractionation with different water quality parameters. Size fractionation study of dissolved trace metals using ultrafiltration technique were also carried out and analysed using inductively coupled plasma mass spectrometry (ICP-MS). Correlation of trace metals with other measured parameters was made to furthermore understand the dynamics of trace metals and its fractionated components in this area. The concentration of dissolved trace metals was in the range of 0.001-0.16 μg/L for Cd, 0.12-2.81 μg/L for Cu, 0.01-1.84 μg/L for Pb, 3-17 μg/L for Fe and 1-34 μg/L for Zn, suggesting the input of anthropogenic sources for trace metals such as municipal, industrial, agricultural and domestic discharge. The periodic monitoring and evaluation of trace metals in wetlands and protected tropical areas is highly recommended.
  5. Alkhadher SAA, Suratman S, Zakaria MP
    Environ Monit Assess, 2023 May 24;195(6):720.
    PMID: 37222826 DOI: 10.1007/s10661-023-11310-w
    One of the molecular chemical markers used to identify anthropogenic inputs is linear alkylbenzenes (LABs) that cause serious impacts in the bays and coastal ecosystems. The surface sediments samples collected from the East Malaysia, including Brunei bay to estimate the LABs concentration and distribution as molecular markers of anthropogenic indicators. Gas chromatography-mass spectrometry (GC-MS) was used after purification, fractionation the hydrocarbons in the sediment samples to identify the sources of LABs. The analysis of variance (ANOVA) and Pearson correlation coefficient were applied to analyze the difference between sampling stations' significance at p S, homologs C13/C12, and internal to external (I/E) congeners have used to assess the LABs degradation rates as well as the effectiveness of sewage treatment. Results of this study showed that the LABs concentration ranged between 7.1 to 41.3 ng g-1 dw, in the investigated stations. The majority of sample sites exhibited a considerable input of C13-LABs homologs, and LABs homologs differed significantly. The estimated LABs ratios (I/E), which ranged between 0.6 and 2.2, demonstrated the effluents with primary and less secondary sources are released into the bay waters. The degradation of LABs were up to 42% in the interrogated locations. The conclusion is that the wastewater treatment system needs to be improved, and that LABs molecular markers are highly effective in tracing anthropogenic sewage contamination.
  6. Hee YY, Weston K, Suratman S, Akhir MF, Latif MT, Valliyodan S
    Environ Sci Pollut Res Int, 2023 May;30(24):65351-65363.
    PMID: 37081368 DOI: 10.1007/s11356-023-26948-9
    Dissolved oxygen is an ecologically critical variable with the prevalence of hypoxia one of the key global anthropogenic issues. A study was carried out to understand the causes of low dissolved oxygen in Brunei Bay, northwest Borneo. Hypoxia was widespread in bottom waters in the monsoonal dry season with dissolved oxygen 
  7. Uning R, Suratman S, Latif MT, Mustaffa NIH
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15380-15390.
    PMID: 34988826 DOI: 10.1007/s11356-021-18395-1
    Terrestrial anionic surfactants (AS) enter the marine environment through coastal region. Despite that, in general limited knowledge is available on the coastal AS transfer pathway. This paper aims to assess the distributions and exchange of AS in the Peninsular Malaysia coastal environments, adjacent to the southern waters of South China Sea and Strait of Malacca. An assessment case study was conducted by a review on the available data from the workgroup that span between the year 2008 and 2019. The findings showed that AS dominated in the sea surface microlayer (SML, 57%) compared to subsurface water (SSW, 43 %). AS were also found to have dominated in fine mode (FM, 71 %) compared to coarse mode (CM, 29 %) atmospheric aerosols. SML AS correspond to the SSW AS (p < 0.01); however, highest enrichment factor (EF) of the SML AS was not consistent with highest SSW AS. Direct AS exchange between SML and FM and CM was not observed. Furthermore, the paper concludes AS mainly located in the SML and FM and could potentially be the main transfer pathway in the coastal environment.
  8. Pang SY, Suratman S, Latif MT, Khan MF, Simoneit BRT, Mohd Tahir N
    Environ Sci Pollut Res Int, 2022 Mar;29(11):15849-15862.
    PMID: 34636003 DOI: 10.1007/s11356-021-16762-6
    Surface sediments along the Southern Terengganu coast (≤7 km from the coast) were analyzed for polycyclic aromatic hydrocarbons (PAHs). The concentrations of 16 USEPA priority polycyclic aromatic hydrocarbons (ΣPAH16) ranged from 2.59 to 155 ng g-1 and their respective alkylated ranged between 8.80 and 24.90 ng g-1. Traces of acephenanthrylene, benzo[c]phenanthrene, thiophenic PAH, and benzonaphthofuran were identified. PAH diagnostic ratios and cross-plots revealed that these sedimentary PAH compounds are derived mainly from pyrogenic sources, primarily from biomass burning and petroleum combustion residues with minor petrogenic input. The high correlations between pyrogenic PAHs to total PAHs (r >0.73, p <0.5), and the Bap/Bep ratio to total PAHs (r = 0.88, p <0.5), suggest that atmospheric deposition and urban runoff are the main deposition pathways. The concentrations of the PAHs in the southern South China Sea fall in the moderate contamination range of 100-1000 ng g-1.
  9. Uning R, Suratman S, Nasir FAM, Latif MT
    Bull Environ Contam Toxicol, 2022 Jan;108(1):145-150.
    PMID: 34296326 DOI: 10.1007/s00128-021-03334-0
    This study determines the bulk surface water (BSW) dissolved inorganic nutrients of nitrogen (DINi) and phosphate (DIP) during the upwelling season off the east coast of Peninsular Malaysia, South China Sea. BSW samples were analysed for DINi and DIP by using a standard automated colorimetric method. BSW DINi and DIP concentrations varied between 0.11 and 2.55 μM (mean 1.12 ± 0.63 μM), and below detection limit, and 0.29 μM (mean 0.11 ± 0.08 μM), respectively. The spatial distribution of higher concentrations between DINi and DIP was distinct. However, the highest concentrations of DINi and DIP were mostly recorded in the month of peak upwelling (July and August), where colder BSW temperatures were also encountered during field sampling. This study provides new evidence on the presence of BSW nutrients of DINi and DIP during upwelling season peak in July and August before their decline in September.
  10. Pang SY, Suratman S, Tay JH, Mohd Tahir N
    Mar Pollut Bull, 2021 Oct;171:112736.
    PMID: 34325152 DOI: 10.1016/j.marpolbul.2021.112736
    The distribution of aliphatic hydrocarbons in three sediment cores from Brunei Bay was investigated in order to understand their sources and the biogeochemical processes of these hydrocarbons. The total concentrations of C15 to C37n-alkanes ranged from 0.70 to 16.5 μg g-1. Traces of hopanes with C29-C31 carbon homologs were detected in the study area. The carbon preference index (CPI15-37) ranged from 1.23 to 3.42 coupled with the natural n-alkane ratio (NAR19-32) ratios (1.52 to 5.34), and the presence of unresolved complex mixtures and hopanes, suggested slight contamination by anthropogenic hydrocarbons, presumably derived from activities along the coasts. The presence of C27 trisnorhopene and diploptene, as well as their association with long-chain and short-chain n-alkanes, revealed a depositional environment of organic matter in the sediment cores.
  11. Siau YF, Le DQ, Suratman S, Jaaman SA, Tanaka K, Kotaro S
    Mar Pollut Bull, 2021 Jan;162:111878.
    PMID: 33341077 DOI: 10.1016/j.marpolbul.2020.111878
    Seasonal variations in total mercury concentrations [Hg] and trophic transfer through the food web were assessed using stable isotopic tracers for the Setiu Wetlands, Terengganu. The [Hg] measured in surface sediments and biota varied inversely between wet and dry seasons. Increased rainfall and water disturbance during the wet season are suggested as the main factors releasing Hg from surface sediments and enhancing the bioavailability of Hg to biota. The elevated Hg levels associated with the leaf stage suggested that litterfall and atmospheric deposition may be the main Hg inputs into mangrove food webs. The positive relationships between log [Hg] and δ15N provided evidence for Hg biomagnification, however low trophic magnification slopes in both seasons indicated that the ecological risk of Hg in the wetland would be negligible. The [Hg] in fish and commercial crabs were below the permitted limits for human consumption.
  12. Zaini NM, Lee HW, Mohamed KN, Sabuti AA, Suratman S, Ong MC
    Data Brief, 2020 Aug;31:105900.
    PMID: 32642516 DOI: 10.1016/j.dib.2020.105900
    Heavy metal pollution in an aquatic environment has become of the main concern to the world due to their non-biodegradable properties, toxicity, persistence, and their ability to adsorb into food chains. With rapid industrialization and development nowadays, heavy metals are introduced continuously into the estuaries and coastal region through rivers, runoff, and land-based point sources. These heavy metals may degrade the aquatic environment and harm the living organisms and toward human indirection through secondary contact. The dataset provided is to give an overview of the spatial and temporal distribution of the heavy metals concentration in Merang River surficial sediment collected from September 2017 to July 2018, subsequently every two months dataset. Sediment samples were collected in 44 stations along the river and 20 stations in the coastal area, which total up to 64 stations. Teflon Bomb closed digestion method with mixed acid was used to digest the sediments. The concentration of heavy metals in the sediment were analysed by using Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The spatial distribution of heavy metals shows the effect of monsoon and wet and dry seasons in the sampling area. Thus, this dataset reveals six months of information on natural and anthropogenic sources intrusion at the Merang River and may also help in monitoring the pollution in the area.
  13. Pang SY, Tay JH, Suratman S, Simoneit BRT, Mohd Tahir N
    Mar Pollut Bull, 2020 Jul;156:111269.
    PMID: 32510409 DOI: 10.1016/j.marpolbul.2020.111269
    Brunei Bay is one of the most important marine environments of East Malaysia (South China Sea), covering many productive ecosystems with activities including fisheries, tourism, and main shipping lanes for petroleum transfers. Evaluation of the sources and distributions of steroids in the surface sedimentary organic matter was carried out by gas chromatography-mass spectrometry (GC-MS). The concentrations of the total identified sterols (TIS) ranged between 0.81 and 12.69 μg g-1 dry weight, and the total sterones were between 0.11 and 5.66 μg g-1 dry weight. The coprostanol level was comparatively low (<0.10 μg g-1), and the multi-biomarker proxies indicated that the region did not exhibit significant contamination from sewage effluents. Principal component analysis (PCA) revealed the coastal environment of the study area was dominated by allochthonous (mainly terrestrial) organic matter input.
  14. Poh SC, Ng NCW, Suratman S, Mathew D, Mohd Tahir N
    Environ Monit Assess, 2018 Dec 04;191(1):3.
    PMID: 30515582 DOI: 10.1007/s10661-018-7128-y
    The objective of this study was to identify the spatial and temporal variabilities of selected nutrients in the Setiu Wetlands Lagoon (SWL), Malaysia. Water samples were collected quarterly at ten monitoring sites. This study presents results from a 10-year field investigation (2003 to 2010 and 2014 to 2015) of water quality in the SWL. For the spatial pattern, four clusters were identified with hierarchical cluster analysis. Analysis of the temporal trend shows that the high total suspended solid loading in 2010 was due to large-scale land clearing upstream of the SWL. The enrichment of ammonium after 2010 could plausibly be due to land-based aquaculture diffuse discharges. In 2005-2007, expansion of oil palm plantations within the Setiu catchment had doubled the phosphorus concentration in the SWL. The natural and anthropogenic alterations of the lagoon inlets profoundly influenced the spatial distribution patterns of nutrients in the SWL. These results suggest that intense anthropogenic disturbances close to the SWL accounted for the water quality deterioration.
  15. Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27074-27089.
    PMID: 30019134 DOI: 10.1007/s11356-018-2745-0
    This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size
  16. Sharip Z, Hashim N, Suratman S
    Environ Monit Assess, 2017 Oct 15;189(11):560.
    PMID: 29034408 DOI: 10.1007/s10661-017-6274-y
    This study investigates the presence and distribution of organochlorine pesticides in streams and the lake in the Sembrong Lake Basin in Malaysia. The catchment of Sembrong Lake has been converted to agricultural areas over the past 30 years, with oil palm plantations and modern agricultural farming being the main land use. Surface water samples were collected from eight sites comprising the stream and lake and analysed for 19 organochlorine pesticides (OCPs). In situ measurement of temperature, dissolved oxygen, pH and conductivity were also undertaken at each site. Aldrin, endrin, δ-BHC, 4,4-DDT, methoxychlor and endosulfan were the main OCPs detected in the lake basin. The total OCP concentration ranged between 5.42 and 349.2 ng/L. The most frequently detected OCPs were δ-BHC, heptachlor and aldrin. The maximum values detected were 23.0, 43.2 and 50.4 ng/L respectively. The highest concentration of OCPs was attributed to 4,4-DDT, but such high residue was rare and only detected once. Other OCP residues were low. Significant differences in the mean values were observed between lake and stream for dichlorodiphenyldichloroethylene (DDE) and α-endosulfan concentration (p 
  17. Farah Naquiah MZ, James RJ, Suratman S, Lee LS, Mohd Hafidz MI, Salleh MZ, et al.
    Behav Brain Funct, 2016 Aug 31;12(1):23.
    PMID: 27582026 DOI: 10.1186/s12993-016-0107-y
    Heroin addiction is a growing concern, affecting the socioeconomic development of many countries. Little is known about transgenerational effects on phenotype changes due to heroin addiction. This study aims to investigate changes in level of anxiety and aggression up to four different generations of adult male rats due to paternal exposure to heroin.
  18. Jaafar SA, Latif MT, Razak IS, Shaharudin MZ, Khan MF, Wahid NBA, et al.
    Mar Pollut Bull, 2016 Aug 15;109(1):480-489.
    PMID: 27230987 DOI: 10.1016/j.marpolbul.2016.05.017
    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol.
  19. Mustafa S, Bahar A, Aziz ZA, Suratman S
    J Environ Manage, 2016 Jan 01;165:159-166.
    PMID: 26433356 DOI: 10.1016/j.jenvman.2015.09.026
    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants.
  20. Alkhadher SAA, Zakaria MP, Yusoff FM, Kannan N, Suratman S, Keshavarzifard M, et al.
    Mar Pollut Bull, 2015 Dec 15;101(1):397-403.
    PMID: 26478457 DOI: 10.1016/j.marpolbul.2015.10.011
    Sewage pollution is one of major concerns of coastal and shoreline settlements in Southeast Asia, especially Brunei. The distribution and sources of LABs as sewage molecular markers were evaluated in surface sediments collected from Brunei Bay. The samples were extracted, fractionated and analyzed using gas chromatography- mass spectrometry (GC-MS). LABs concentrations ranged from 7.1 to 41.3 ng g(-1) dry weight (dw) in surficial sediments from Brunei Bay. The study results showed LABs concentrations variably due to the LABs intensity and anthropogenic influence along Brunei Bay in recent years. The ratio of Internal to External isomers (I/E ratio) of LABs in sediment samples from Brunei Bay ranged from 0.56 to 2.17 along Brunei Bay stations, indicating that the study areas were receiving primary and secondary effluents. This is the first study carried out to assess the distribution and sources of LABs in surface sediments from Brunei Bay, Brunei.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links