METHODS: Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review.
RESULTS: Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units.
CONCLUSION: Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.
METHODS: The model was developed to estimate knee torque from experimentally derived MMG signals and other parameters related to torque production, including the knee angle and stimulation intensity, during NMES-assisted knee extension.
RESULTS: When the relationship between the actual and predicted torques was quantified using the coefficient of determination (R2), with a Gaussian support vector kernel, the R2 value indicated an estimation accuracy of 95% for the training subset and 94% for the testing subset while the polynomial support vector kernel indicated an accuracy of 92% for the training subset and 91% for the testing subset. For the Gaussian kernel, the root mean square error of the model was 6.28 for the training set and 8.19 for testing set, while the polynomial kernels for the training and testing sets were 7.99 and 9.82, respectively.
CONCLUSIONS: These results showed good predictive accuracy for SVR modelling, which can be generalized, and suggested that the MMG signals from paralyzed knee extensors are a suitable proxy for the NMES-assisted torque produced during repeated bouts of isometric knee extension tasks. This finding has potential implications for using MMG signals as torque sensors in NMES closed-loop systems and provides valuable information for implementing this method in research and clinical settings.