Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Hu S, Anschuetz L, Hall DA, Caversaccio M, Wimmer W
    Trends Hear, 2021 3 6;25:2331216520986303.
    PMID: 33663298 DOI: 10.1177/2331216520986303
    Residual inhibition, that is, the temporary suppression of tinnitus loudness after acoustic stimulation, is a frequently observed phenomenon that may have prognostic value for clinical applications. However, it is unclear in which subjects residual inhibition is more likely and how stable the effect of inhibition is over multiple repetitions. The primary aim of this work was to evaluate the effect of hearing loss and tinnitus chronicity on residual inhibition susceptibility. The secondary aim was to investigate the short-term repeatability of residual inhibition. Residual inhibition was assessed in 74 tinnitus subjects with 60-second narrow-band noise stimuli in 10 consecutive trials. The subjects were assigned to groups according to their depth of suppression (substantial residual inhibition vs. comparator group). In addition, a categorization in normal hearing and hearing loss groups, related to the degree of hearing loss at the frequency corresponding to the tinnitus pitch, was made. Logistic regression was used to identify factors associated with susceptibility to residual inhibition. Repeatability of residual inhibition was assessed using mixed-effects ordinal regression including poststimulus time and repetitions as factors. Tinnitus chronicity was not associated with residual inhibition for subjects with hearing loss, while a statistically significant negative association between tinnitus chronicity and residual inhibition susceptibility was observed in normal hearing subjects (odds ratio: 0.63; p = .0076). Moreover, repeated states of suppression can be stably induced, reinforcing the use of residual inhibition for within-subject comparison studies.
    Matched MeSH terms: Acoustic Stimulation
  2. Ibrahim IA, Ting HN, Moghavvemi M
    J Int Adv Otol, 2019 Apr;15(1):87-93.
    PMID: 30924771 DOI: 10.5152/iao.2019.4553
    OBJECTIVES: This study uses a new approach for classifying the human ethnicity according to the auditory brain responses (electroencephalography [EEG] signals) with a high level of accuracy. Moreover, the study presents three different algorithms used to classify the human ethnicity using auditory brain responses. The algorithms were tested on Malays and Chinese as a case study.

    MATERIALS AND METHODS: The EEG signal was used as a brain response signal, which was evoked by two auditory stimuli (Tones and Consonant Vowels stimulus). The study was carried out on Malaysians (Malay and Chinese) with normal hearing and with hearing loss. A ranking process for the subjects' EEG data and the nonlinear features was used to obtain the maximum classification accuracy.

    RESULTS: The study formulated the classification of Normal Hearing Ethnicity Index and Sensorineural Hearing Loss Ethnicity Index. These indices classified the human ethnicity according to brain auditory responses by using numerical values of response signal features. Three classification algorithms were used to verify the human ethnicity. Support Vector Machine (SVM) classified the human ethnicity with an accuracy of 90% in the cases of normal hearing and sensorineural hearing loss (SNHL); the SVM classified with an accuracy of 84%.

    CONCLUSION: The classification indices categorized or separated the human ethnicity in both hearing cases of normal hearing and SNHL with high accuracy. The SVM classifier provided a good accuracy in the classification of the auditory brain responses. The proposed indices might constitute valuable tools for the classification of the brain responses according to the human ethnicity.

    Matched MeSH terms: Acoustic Stimulation/methods
  3. Woei TJ, Mazlan R, Tamil AM, Rosli NSM, Hasbi SM, Hashim ND, et al.
    Int Tinnitus J, 2023 Dec 04;27(1):75-81.
    PMID: 38050889 DOI: 10.5935/0946-5448.20230013
    OBJECTIVE: The purpose of this study was to compare the reliability and accuracy of chirp-based Multiple Auditory Steady State Response (MSSR) and Auditory Brainstem Response (ABR) in children.

    METHODS: The prospective clinical study was conducted at Selayang Hospital (SH) and Hospital Canselor Tuanku Muhriz (HCTM) within one year. A total of 38 children ranging from 3 to 18 years old underwent hearing evaluation using ABR tests and MSSR under sedation. The duration of both tests were then compared.

    RESULTS: The estimated hearing threshold of frequency specific chirp MSSR showed good correlation with ABR especially in higher frequencies such as 2000 Hz and 4000Hz with the value of cronbach alpha of 0.890, 0.933, 0.970 and 0.969 on 500Hz, 1000Hz, 2000Hz and 4000Hz. The sensitivity of MSSR is 0.786, 0.75, 0.957 and 0.889 and specificity is 0.85, 0.882, 0.979 and 0.966 over 500Hz, 1000Hz, 2000Hz and 4000Hz. The duration of MSSR tests were shorter than ABR tests in normal hearing children with an average of 35.3 minutes for MSSR tests and 46.4 minutes for ABR tests. This can also be seen in children with hearing loss where the average duration for MSSR tests is 40.0 minutes and 52.0 minutes for ABR tests.

    CONCLUSION: MSSR showed good correlation and reliability in comparison with ABR especially on higher frequencies. Hence, MSSR is a good clinical test to diagnose children with hearing loss.

    Matched MeSH terms: Acoustic Stimulation
  4. Chong FY, Jenstad LM
    Med J Malaysia, 2018 12;73(6):365-370.
    PMID: 30647205
    INTRODUCTION: Modulation-based noise reduction (MBNR) is one of the common noise reduction methods used in hearing aids. Gain reduction in high frequency bands may occur for some implementations of MBNR and fricatives might be susceptible to alteration, given the high frequency components in fricative noise. The main objective of this study is to quantify the acoustic effect of MBNR on /s, z/.

    METHODS: Speech-and-noise signals were presented to, and recorded from, six hearing aids mounted on a head and torso simulator. Test stimuli were nonsense words mixed with pink, cafeteria, or speech-modulated noise at 0 dB SNR. Fricatives /s, z/ were extracted from the recordings for analysis.

    RESULTS: Analysis of the noise confirmed that MBNR in all hearing aids was activated for the recordings. More than 1.0 dB of acoustic change occurred to /s, z/ when MBNR was turned on in four out of the six hearing aids in the pink and cafeteria noise conditions. The acoustics of /s, z/ by female talkers were affected more than male talkers. Significant relationships between amount of noise reduction and acoustic change of /s, z/ were found. Amount of noise reduction accounts for 42.8% and 16.8% of the variability in acoustic change for /s/ and /z/ respectively.

    CONCLUSION: Some clinically-available implementations of MBNR have measurable effects on the acoustics of fricatives. Possible implications for speech perception are discussed.

    Matched MeSH terms: Acoustic Stimulation
  5. Zilany MS, Bruce IC, Carney LH
    J Acoust Soc Am, 2014 Jan;135(1):283-6.
    PMID: 24437768 DOI: 10.1121/1.4837815
    A phenomenological model of the auditory periphery in cats was previously developed by Zilany and colleagues [J. Acoust. Soc. Am. 126, 2390-2412 (2009)] to examine the detailed transformation of acoustic signals into the auditory-nerve representation. In this paper, a few issues arising from the responses of the previous version have been addressed. The parameters of the synapse model have been readjusted to better simulate reported physiological discharge rates at saturation for higher characteristic frequencies [Liberman, J. Acoust. Soc. Am. 63, 442-455 (1978)]. This modification also corrects the responses of higher-characteristic frequency (CF) model fibers to low-frequency tones that were erroneously much higher than the responses of low-CF model fibers in the previous version. In addition, an analytical method has been implemented to compute the mean discharge rate and variance from the model's synapse output that takes into account the effects of absolute refractoriness.
    Matched MeSH terms: Acoustic Stimulation*
  6. Reeves A, Seluakumaran K, Scharf B
    J Acoust Soc Am, 2021 05;149(5):3352.
    PMID: 34241123 DOI: 10.1121/10.0004786
    A contralateral "cue" tone presented in continuous broadband noise both lowers the threshold of a signal tone by guiding attention to it and raises its threshold by interference. Here, signal tones were fixed in duration (40 ms, 52 ms with ramps), frequency (1500 Hz), timing, and level, so attention did not need guidance. Interference by contralateral cues was studied in relation to cue-signal proximity, cue-signal temporal overlap, and cue-signal order (cue after: backward interference, BI; or cue first: forward interference, FI). Cues, also ramped, were 12 dB above the signal level. Long cues (300 or 600 ms) raised thresholds by 5.3 dB when the signal and cue overlapped and by 5.1 dB in FI and 3.2 dB in BI when cues and signals were separated by 40 ms. Short cues (40 ms) raised thresholds by 4.5 dB in FI and 4.0 dB in BI for separations of 7 to 40 ms, but by ∼13 dB when simultaneous and in phase. FI and BI are comparable in magnitude and hardly increase when the signal is close in time to abrupt cue transients. These results do not support the notion that masking of the signal is due to the contralateral cue onset/offset transient response. Instead, sluggish attention or temporal integration may explain contralateral proximal interference.
    Matched MeSH terms: Acoustic Stimulation
  7. Khairi MD, Din S, Shahid H, Normastura AR
    J Laryngol Otol, 2005 Sep;119(9):678-83.
    PMID: 16156907
    The objective of this prospective study was to report on the prevalence of hearing impairment in the neonatal unit population. From 15 February 2000 to 15 March 2000 and from 15 February 2001 to 15 May 2001, 401 neonates were screened using transient evoked otoacoustic emissions (TEOAE) followed by second-stage screening of those infants who failed the initial test. Eight (2 per cent) infants failed one ear and 23 (5.74 per cent) infants failed both ears, adding up to 7.74 per cent planned for second-stage screening. Five out of 22 infants who came for the follow up failed the screening, resulting in a prevalence of hearing impairment of 1 per cent (95 per cent confidence interval [95% CI]: 0.0-2.0). Craniofacial malformations, very low birth weight, ototoxic medication, stigmata/syndromes associated with hearing loss and hyperbilirubinaemia at the level of exchange tranfusion were identified to be independent significant risk factors for hearing impairment, while poor Apgar scores and mechanical ventilation of more than five days were not. In conclusion, hearing screening in high-risk neonates revealed a total of 1 per cent with hearing loss. The changes in the risk profile indicate improved perinatal handling in a neonatal population at risk for hearing disorders.
    Matched MeSH terms: Acoustic Stimulation/methods
  8. Jalaei B, Zakaria MN, Mohd Azmi MH, Nik Othman NA, Sidek D
    Ann Otol Rhinol Laryngol, 2017 Apr;126(4):290-295.
    PMID: 28177264 DOI: 10.1177/0003489417690169
    OBJECTIVES: Gender disparities in speech-evoked auditory brainstem response (speech-ABR) outcomes have been reported, but the literature is limited. The present study was performed to further verify this issue and determine the influence of head size on speech-ABR results between genders.

    METHODS: Twenty-nine healthy Malaysian subjects (14 males and 15 females) aged 19 to 30 years participated in this study. After measuring the head circumference, speech-ABR was recorded by using synthesized syllable /da/ from the right ear of each participant. Speech-ABR peaks amplitudes, peaks latencies, and composite onset measures were computed and analyzed.

    RESULTS: Significant gender disparities were noted in the transient component but not in the sustained component of speech-ABR. Statistically higher V/A amplitudes and less steeper V/A slopes were found in females. These gender differences were partially affected after controlling for the head size.

    CONCLUSIONS: Head size is not the main contributing factor for gender disparities in speech-ABR outcomes. Gender-specific normative data can be useful when recording speech-ABR for clinical purposes.

    Matched MeSH terms: Acoustic Stimulation/methods
  9. Mao D, Wunderlich J, Savkovic B, Jeffreys E, Nicholls N, Lee OW, et al.
    Sci Rep, 2021 12 14;11(1):24006.
    PMID: 34907273 DOI: 10.1038/s41598-021-03595-z
    Speech detection and discrimination ability are important measures of hearing ability that may inform crucial audiological intervention decisions for individuals with a hearing impairment. However, behavioral assessment of speech discrimination can be difficult and inaccurate in infants, prompting the need for an objective measure of speech detection and discrimination ability. In this study, the authors used functional near-infrared spectroscopy (fNIRS) as the objective measure. Twenty-three infants, 2 to 10 months of age participated, all of whom had passed newborn hearing screening or diagnostic audiology testing. They were presented with speech tokens at a comfortable listening level in a natural sleep state using a habituation/dishabituation paradigm. The authors hypothesized that fNIRS responses to speech token detection as well as speech token contrast discrimination could be measured in individual infants. The authors found significant fNIRS responses to speech detection in 87% of tested infants (false positive rate 0%), as well as to speech discrimination in 35% of tested infants (false positive rate 9%). The results show initial promise for the use of fNIRS as an objective clinical tool for measuring infant speech detection and discrimination ability; the authors highlight the further optimizations of test procedures and analysis techniques that would be required to improve accuracy and reliability to levels needed for clinical decision-making.
    Matched MeSH terms: Acoustic Stimulation*
  10. Conlon B, Hamilton C, Meade E, Leong SL, O Connor C, Langguth B, et al.
    Sci Rep, 2022 Jun 30;12(1):10845.
    PMID: 35773272 DOI: 10.1038/s41598-022-13875-x
    More than 10% of the population suffers from tinnitus, which is a phantom auditory condition that is coded within the brain. A new neuromodulation approach to treat tinnitus has emerged that combines sound with electrical stimulation of somatosensory pathways, supported by multiple animal studies demonstrating that bimodal stimulation can elicit extensive neural plasticity within the auditory brain. More recently, in a large-scale clinical trial, bimodal neuromodulation combining sound and tongue stimulation drove significant reductions in tinnitus symptom severity during the first 6 weeks of treatment, followed by diminishing improvements during the second 6 weeks of treatment. The primary objective of the large-scale randomized and double-blinded study presented in this paper was to determine if background wideband noise as used in the previous clinical trial was necessary for bimodal treatment efficacy. An additional objective was to determine if adjusting the parameter settings after 6 weeks of treatment could overcome treatment habituation effects observed in the previous study. The primary endpoint at 6-weeks involved within-arm and between-arm comparisons for two treatment arms with different bimodal neuromodulation settings based on two widely used and validated outcome instruments, Tinnitus Handicap Inventory and Tinnitus Functional Index. Both treatment arms exhibited a statistically significant reduction in tinnitus symptoms during the first 6-weeks, which was further reduced significantly during the second 6-weeks by changing the parameter settings (Cohen's d effect size for full treatment period per arm and outcome measure ranged from - 0.7 to - 1.4). There were no significant differences between arms, in which tongue stimulation combined with only pure tones and without background wideband noise was sufficient to reduce tinnitus symptoms. These therapeutic effects were sustained up to 12 months after the treatment ended. The study included two additional exploratory arms, including one arm that presented only sound stimuli during the first 6 weeks of treatment and bimodal stimulation in the second 6 weeks of treatment. This arm revealed the criticality of combining tongue stimulation with sound for treatment efficacy. Overall, there were no treatment-related serious adverse events and a high compliance rate (83.8%) with 70.3% of participants indicating benefit. The discovery that adjusting stimulation parameters overcomes previously observed treatment habituation can be used to drive greater therapeutic effects and opens up new opportunities for optimizing stimuli and enhancing clinical outcomes for tinnitus patients with bimodal neuromodulation.
    Matched MeSH terms: Acoustic Stimulation
  11. Zakaria MN, Salim R, Abdul Wahat NH, Md Daud MK, Wan Mohamad WN
    Sci Rep, 2023 Dec 21;13(1):22842.
    PMID: 38129442 DOI: 10.1038/s41598-023-48810-1
    There has been a growing interest in studying the usefulness of chirp stimuli in recording cervical vestibular evoked myogenic potential (cVEMP) waveforms. Nevertheless, the study outcomes are debatable and require verification. In view of this, the aim of the present study was to compare cVEMP results when elicited by 500 Hz tone burst and narrowband (NB) CE-Chirp stimuli in adults with sensorineural hearing loss (SNHL). Fifty adults with bilateral SNHL (aged 20-65 years) underwent the cVEMP testing based on the established protocol. The 500 Hz tone burst and NB CE-Chirp (centred at 500 Hz) stimuli were presented to each ear at an intensity level of 120.5 dB peSPL. P1 latency, N1 latency, and P1-N1 amplitude values were analysed accordingly. The NB CE-Chirp stimulus produced significantly shorter P1 and N1 latencies (p  0.80). In contrast, both stimuli elicited cVEMP responses with P1-N1 amplitude values that were not statistically different from one another (p = 0.157, d = 0.15). Additionally, age and hearing level were found to be significantly correlated (r = 0.56, p 
    Matched MeSH terms: Acoustic Stimulation/methods
  12. Fraundorf SH, Watson DG, Benjamin AS
    Psychol Aging, 2012 Mar;27(1):88-98.
    PMID: 21639646 DOI: 10.1037/a0024138
    In two experiments, we investigated age-related changes in how prosodic pitch accents affect memory. Participants listened to recorded discourses that contained two contrasts between pairs of items (e.g., one story contrasted British scientists with French scientists and Malaysia with Indonesia). The end of each discourse referred to one item from each pair; these references received a pitch accent that either denoted contrast (L + H* in the ToBI system) or did not (H*). A contrastive accent on a particular pair improved later recognition memory equally for young and older adults. However, older adults showed decreased memory if the other pair received a contrastive accent (Experiment 1). Young adults with low working memory performance also showed this penalty (Experiment 2). These results suggest that pitch accents guide processing resources to important information for both older and younger adults but diminish memory for less important information in groups with reduced resources, including older adults.
    Matched MeSH terms: Acoustic Stimulation
  13. Hanafi SA, Zulkifli I, Ramiah SK, Chung ELT, Kamil R, Awad EA
    Poult Sci, 2023 Feb;102(2):102390.
    PMID: 36608455 DOI: 10.1016/j.psj.2022.102390
    Prenatal stress may evoke considerable physiological consequences on the developing poultry embryos and neonates. The present study aimed to determine prenatal auditory stimulation effects on serum levels of ceruloplasmin (CPN), alpha-1-acid glycoprotein (AGP), corticosterone (CORT), and heat shock protein 70 (Hsp70) regulations in developing chicken embryos and newly hatched chicks. Hatching eggs were subjected to the following auditory treatments; 1) control (no additional sound treatment other than the background sound of the incubator's compressors at 40 dB), 2) noise exposure (eggs were exposed to pre-recorded traffic noise at 90 dB) (NOISE), and 3) music exposure (eggs were exposed to Mozart's Sonata for Two Pianos in D Major, K 488 at 90 dB) (MUSIC). The NOISE and MUSIC treatments were for 20 min/h for 24 h (a total of 8 h/d), starting from embryonic days (ED) 12 to hatching. The MUSIC (1.37 ± 0.1 ng/mL) and NOISE (1.49 ± 0.2 ng/mL) treatments significantly elevated CPN at ED 15 compared to the Control (0.82 ± 0.04 ng/mL) group and post-hatch day 1 (Control, 1.86 ± 0.2 ng/mL; MUSIC, 2.84 ± 0.4 ng/mL; NOISE, 3.04 ± 0.3 ng/mL), AGP at ED 15 (Control, 39.1 ± 7.1 mg/mL; MUSIC, 85.5 ± 12.9 mg/mL; NOISE, 85.4 ± 15.1 mg/mL) and post-hatch day 1 (Control, 20.4 ± 2.2 mg/mL; MUSIC, 30.5 ± 4.7 mg/mL; NOISE, 30.3 ± 1.4 mg/mL). CORT significantly increased at ED 15 in both MUSIC (9.024 ± 1.4 ng/mL) and NOISE (12.15 ± 1.6 ng/mL) compared to the Control (4.39 ± 0.7 ng/mL) group. On the other hand, MUSIC exposed embryos had significantly higher Hsp70 expression than their Control and NOISE counterparts at ED 18 (Control, 12.9 ± 1.2 ng/mL; MUSIC, 129.6 ± 26.4 ng/mL; NOISE, 13.3 ± 2.3 ng/mL) and post-hatch day 1 (Control, 15.2 ± 1.7 ng/mL; MUSIC, 195.5 ± 68.5 ng/mL; NOISE, 13.2 ± 2.7 ng/mL). In conclusion, developing chicken embryos respond to auditory stimulation by altering CPN, AGP, CORT, and Hsp70. The alterations of these analytes could be important in developing embryos and newly hatched chicks to cope with stress attributed to auditory stimulation.
    Matched MeSH terms: Acoustic Stimulation/veterinary
  14. Zakaria MN, Abdul Wahab NA, Awang MA
    Noise Health, 2017 12 2;19(87):112-113.
    PMID: 29192621 DOI: 10.4103/nah.NAH_2_17
    Matched MeSH terms: Acoustic Stimulation
  15. Maamor N, Billings CJ
    Neurosci Lett, 2017 01 01;636:258-264.
    PMID: 27838448 DOI: 10.1016/j.neulet.2016.11.020
    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain's response to complex auditory stimuli and contribute to the ability to listen in noise.
    Matched MeSH terms: Acoustic Stimulation/methods
  16. Bakker MJ, van Dijk JG, Pramono A, Sutarni S, Tijssen MA
    Mov Disord, 2013 Mar;28(3):370-9.
    PMID: 23283702 DOI: 10.1002/mds.25280
    The nature of culture-specific startles syndromes such as "Latah" in Indonesia and Malaysia is ill understood. Hypotheses concerning their origin include sociocultural behavior, psychiatric disorders, and neurological syndromes. The various disorders show striking similarities despite occurring in diverse cultural settings and genetically distant populations. They are characterized clinically by exaggerated startle responses and involuntary vocalizations, echolalia, and echopraxia. Quantifying startle reflexes may help define Latah within the 3 groups of startle syndromes: (1) hyperekplexia, (2) startle-induced disorders, and (3) neuropsychiatric startle syndromes. Twelve female Latah patients (mean age, 44.6 years; SD, 7.7 years) and 12 age-, sex- and socioeconomically matched controls (mean age, 42.3 year; SD, 8.0) were studied using structured history taking and neurological examination including provocation of vocalizations, echolalia, and echopraxia. We quantified auditory startle reflexes with electromyographic activity of 6 left-sided muscles following 104-dB tones. We defined 2 phases for the startle response: a short latency motor startle reflex initiated in the lower brain stem <100/120 ms) and a later, second phase more influenced by psychological factors (the "orienting reflex," 100/120-1000 ms after the stimulus). Early as well as late motor startle responses were significantly increased in patients compared with controls (P ≤ .05). Following their startle response, Latah patients showed stereotyped responses including vocalizations and echo phenomena. Startle responses were increased, but clinically these proved insignificant compared with the stereotyped behavioral responses following the startle response. This study supports the classification of Latah as a "neuropsychiatric startle syndrome."
    Matched MeSH terms: Acoustic Stimulation
  17. Dewey RS, Hall DA, Plack CJ, Francis ST
    Magn Reson Med, 2021 11;86(5):2577-2588.
    PMID: 34196020 DOI: 10.1002/mrm.28902
    PURPOSE: Detecting sound-related activity using functional MRI requires the auditory stimulus to be more salient than the intense background scanner acoustic noise. Various strategies can reduce the impact of scanner acoustic noise, including "sparse" temporal sampling with single/clustered acquisitions providing intervals without any background scanner acoustic noise, or active noise cancelation (ANC) during "continuous" temporal sampling, which generates an acoustic signal that adds destructively to the scanner acoustic noise, substantially reducing the acoustic energy at the participant's eardrum. Furthermore, multiband functional MRI allows multiple slices to be collected simultaneously, thereby reducing scanner acoustic noise in a given sampling period.

    METHODS: Isotropic multiband functional MRI (1.5 mm) with sparse sampling (effective TR = 9000 ms, acquisition duration = 1962 ms) and continuous sampling (TR = 2000 ms) with ANC were compared in 15 normally hearing participants. A sustained broadband noise stimulus was presented to drive activation of both sustained and transient auditory responses within subcortical and cortical auditory regions.

    RESULTS: Robust broadband noise-related activity was detected throughout the auditory pathways. Continuous sampling with ANC was found to give a statistically significant advantage over sparse sampling for the detection of the transient (onset) stimulus responses, particularly in the auditory cortex (P < .001) and inferior colliculus (P < .001), whereas gains provided by sparse over continuous ANC for detecting offset and sustained responses were marginal (p ~ 0.05 in superior olivary complex, inferior colliculus, medial geniculate body, and auditory cortex).

    CONCLUSIONS: Sparse and continuous ANC multiband functional MRI protocols provide differing advantages for observing the transient (onset and offset) and sustained stimulus responses.

    Matched MeSH terms: Acoustic Stimulation
  18. Nashrah Maamor, Sitti Ladyia Salleh, Nurul Ain Abdullah
    MyJurnal
    The objective of this study was to investigate the degree to which Auditory Steady State Response (ASSR) thresholds correlate with behavioral thresholds in two groups of adult subjects, one with normal hearing and the other with sensorineural hearing impairment. When the relationship between ASSR and behavioral thresholds were analyzed separately according to different groups of subjects, significant correlations were only found for the hearing impaired group. The mean differences between the actual and the predicted thresholds derived from linear regression analysis for that group of subjects were found to be 5 dB (SD = 4), 3 dB (SD = 3), 4 dB (SD = 3) and 4 dB (SD = 4) with correlation coefficients of 0.80, 0.88, 0.91 and 0.97 for the 500, 1000, 2000 and 4000 Hz carrier frequencies, respectively. When the relationship between ASSR and behavioral thresholds were analyzed using data from both groups of subjects, correlation coefficients were found to be higher across carrier frequencies of 500 to 4000 Hz (r ³ 0.96) with mean differences between the actual and the predicted thresholds of 6 dB (SD = 3), 4 dB (SD = 3), 4 dB (SD = 3) and 6 dB (SD = 3) for the hearing impaired group and 11dB (SD = 7), 8 dB (SD = 8), 8 dB (SD = 6) and 10 dB (SD = 7) for the normal hearing group. However, it was observed that the range of differences between the actual and the predicted thresholds were quite large reaching 34 dB for the 500 and 4000 Hz carrier frequencies. This suggests that in clinical setting, ASSR cannot predict the presence or absence of a hearing loss accurately. In general, it can be concluded that ASSR allow for an accurate prediction of behavioral thresholds within ± 10 dB in subjects with hearing impairment. However, ASSR cannot accurately predict hearing thresholds in normally hearing individuals.
    Key words: auditory steady-state response threshold, behavioral threshold, adult, normal hearing, hearing impairment
    Matched MeSH terms: Acoustic Stimulation
  19. Umat C, McDermott HJ, McKay CM
    J Am Acad Audiol, 2006 12 13;17(10):733-46.
    PMID: 17153721
    This study investigated the effect of intensity on pitch in electric hearing and its relationship to the speech perception ability of cochlear implantees. Subjects were 13 adult users of the Nucleus 22 cochlear implant system, using either the Spectra22 or ESPrit22 speech processor and the SPEAK speech processing strategy. A multidimensional scaling technique was employed. Speech perception was measured using sentences and vowels. All measurements were performed in a soundfield condition, and subjects wore their own speech processors with their normally used settings. Results showed a significant correlation between the degree of deviation of the subjects' stimulus spaces from the "ideal" space and subjects' performance with the sentences, but not with the vowels. A significant correlation was found between subjects' response variability in performing the multidimensional scaling task and their speech perception measures, suggesting that spectral smearing or underlying cognitive abilities might affect implantees' speech perception performance.
    Matched MeSH terms: Acoustic Stimulation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links