Displaying publications 1 - 20 of 138 in total

Abstract:
Sort:
  1. Mohktar RA, Montgomery MK, Murphy RM, Watt MJ
    Am J Physiol Endocrinol Metab, 2016 07 01;311(1):E128-37.
    PMID: 27189934 DOI: 10.1152/ajpendo.00084.2016
    Cytoplasmic lipid droplets provide a reservoir for triglyceride storage and are a central hub for fatty acid trafficking in cells. The protein perilipin 5 (PLIN5) is highly expressed in oxidative tissues such as skeletal muscle and regulates lipid metabolism by coordinating the trafficking and the reversible interactions of effector proteins at the lipid droplet. PLIN5 may also regulate mitochondrial function, although this remains unsubstantiated. Hence, the aims of this study were to examine the role of PLIN5 in the regulation of skeletal muscle substrate metabolism during acute exercise and to determine whether PLIN5 is required for the metabolic adaptations and enhancement in exercise tolerance following endurance exercise training. Using muscle-specific Plin5 knockout mice (Plin5(MKO)), we show that PLIN5 is dispensable for normal substrate metabolism during exercise, as reflected by levels of blood metabolites and rates of glycogen and triglyceride depletion that were indistinguishable from control (lox/lox) mice. Plin5(MKO) mice exhibited a functional impairment in their response to endurance exercise training, as reflected by reduced maximal running capacity (20%) and reduced time to fatigue during prolonged submaximal exercise (15%). The reduction in exercise performance was not accompanied by alterations in carbohydrate and fatty acid metabolism during submaximal exercise. Similarly, mitochondrial capacity (mtDNA, respiratory complex proteins, citrate synthase activity) and mitochondrial function (oxygen consumption rate in muscle fiber bundles) were not different between lox/lox and Plin5(MKO) mice. Thus, PLIN5 is dispensable for normal substrate metabolism during exercise and is not required to promote mitochondrial biogenesis or enhance the cellular adaptations to endurance exercise training.
    Matched MeSH terms: Adaptation, Physiological/genetics*
  2. Parvizpour S, Hussin N, Shamsir MS, Razmara J
    Appl Microbiol Biotechnol, 2021 Feb;105(3):899-907.
    PMID: 33427934 DOI: 10.1007/s00253-020-11074-0
    Psychrophiles are cold-living microorganisms synthesizing enzymes that are permanently active at almost near-zero temperatures. Psychrozymes are supposed to be structurally more flexible than their homologous proteins. This structural flexibility enables these proteins to undergo conformational changes during catalysis and improve catalytic efficiency at low temperatures. The outstanding characteristics of the psychrophilic enzymes have attracted the attention of the scientific community to utilize them in a wide variety of industrial and pharmaceutical applications. In this review, we first highlight the current knowledge of the cold-adaptation mechanisms of the psychrophiles. In the sequel, we describe the potential applications of the enzymes in different biotechnological processes specifically, in the production of industrial and pharmaceutical products. KEY POINTS: • Methods that organisms have evolved to survive and proliferate at cold environments. • The economic benefits due to their high activity at low and moderate temperatures. • Applications of the psychrophiles in biotechnological and pharmaceutical industry.
    Matched MeSH terms: Adaptation, Physiological
  3. Loo JL, Keng SL, Ramírez-Espinosa IG, Nor Hadi NM, Ramírez-Gutiérrez JA, Shoesmith W
    Asia Pac Psychiatry, 2021 Mar;13(1):e12437.
    PMID: 33188568 DOI: 10.1111/appy.12437
    BACKGROUND: Borderline personality disorder (BPD) contributes to suicide-related morbidity and mortality and requires more intensive psychotherapeutic resources due to its high mental health service usage. Accessibility to an evidence-based treatment program is a cornerstone to support patients with BPD and part of broader suicide prevention efforts as well as improving their quality of life.

    AIMS: In this article, the authors aim to discuss and review available dialectical behavior therapy (DBT) and DBT-informed services of selected countries in the Asia-Pacific Rim, namely Singapore, Malaysia, and Mexico.

    MATERIALS & METHODS: We contacted providers of different services and gathered information on the process of setting up the service and adapting the treatment, in addition to reviewing the available literature published in the countries.

    RESULTS: To date, there have been a pair of DBT-informed services in Singapore, four in Malaysia, and several in Mexico with a few of them offering standard DBT. Different efforts have been put in place to increase the accessibility to training and also the number of DBT practitioners.

    DISCUSSION: Important considerations during the process of setting up new services include the use of domestic examples and local language that are contextually appropriate for the local community. Selected challenges faced in common include shortage of workforce, affordability of training programs, and the need for language adaptation with or without translation.

    CONCLUSION: Further long-term evaluation of locally adapted DBT-informed mental health services will help to elucidate the effectiveness and efficacy of the program which will potentially serve as a guide for other resource-scarce regions.

    Matched MeSH terms: Adaptation, Physiological
  4. Gan HM, Hudson AO, Rahman AY, Chan KG, Savka MA
    BMC Genomics, 2013;14:431.
    PMID: 23809012 DOI: 10.1186/1471-2164-14-431
    Bacteria belonging to the genus Novosphingobium are known to be metabolically versatile and occupy different ecological niches. In the absence of genomic data and/or analysis, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. In this study, we analyzed the whole genome sequencing data of six bacteria in the Novosphingobium genus and provide evidence to show the presence of genes that are associated with salt tolerance, cell-cell signaling and aromatic compound biodegradation phenotypes. Additionally, we show the taxonomic relationship between the sequenced bacteria based on phylogenomic analysis, average amino acid identity (AAI) and genomic signatures.
    Matched MeSH terms: Adaptation, Physiological/drug effects; Adaptation, Physiological/genetics*
  5. Chieng S, Carreto L, Nathan S
    BMC Genomics, 2012;13:328.
    PMID: 22823543 DOI: 10.1186/1471-2164-13-328
    Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation.
    Matched MeSH terms: Adaptation, Physiological
  6. Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, et al.
    BMC Genomics, 2015 Nov 18;16:966.
    PMID: 26581579 DOI: 10.1186/s12864-015-2200-2
    BACKGROUND: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species.

    RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.

    CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

    Matched MeSH terms: Adaptation, Physiological/genetics
  7. Zhang Y, Wu Q, Fang S, Li S, Zheng H, Zhang Y, et al.
    BMC Genomics, 2020 Aug 14;21(1):559.
    PMID: 32795331 DOI: 10.1186/s12864-020-06965-5
    BACKGROUND: Mud crab, Scylla paramamosain, a euryhaline crustacean species, mainly inhabits the Indo-Western Pacific region. Wild mud crab spawn in high-salt condition and the salinity reduced with the growth of the hatching larvae. When the larvae grow up to megalopa, they migrate back to estuaries and coasts in virtue of the flood tide, settle and recruit adult habitats and metamorphose into the crablet stage. Adult crab can even survive in a wide salinity of 0-35 ppt. To investigate the mRNA profile after salinity stress, S. paramamosain megalopa were exposed to different salinity seawater (low, 14 ppt; control, 25 ppt; high, 39 ppt).

    RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.

    CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.

    Matched MeSH terms: Adaptation, Physiological/genetics
  8. Balqis-Ali NZ, Saw PS, Jailani AS, Yeoh TW, Fun WH, Mohd-Salleh N, et al.
    BMJ Open, 2020 03 26;10(3):e034128.
    PMID: 32220914 DOI: 10.1136/bmjopen-2019-034128
    INTRODUCTION: Person-centred care (PCC) has become a global movement in healthcare. Despite this, the level of PCC is not routinely assessed in clinical practice. This protocol describes the adaptation and validation of the Person-Centred Practice Inventory-Staff (PCPI-S) tool that will be used to assess person-centred practices of primary healthcare providers in Malaysia.

    METHODS AND ANALYSIS: To ensure conceptual and item equivalence, the original version of the PCPI-S will be reviewed and adapted for cultural context by an expert committee. The instrument will subsequently be translated into Malay language using the forward-backward translation method by two independent bilingual speaking individuals. This will be pretested in four primary care clinics and refined accordingly. The instrument will be assessed for its psychometric properties, such as test-retest reliability, construct and internal validity, using exploratory and confirmatory factor analysis.

    ETHICS AND DISSEMINATION: Study findings will be disseminated to healthcare professionals and academicians in the field through publication in peer-reviewed journals and conference presentations, as well as at managerial clinic sites for practice improvement. The study was approved by the Medical Research and Ethics Committee (MREC), Ministry of Health Malaysia (KKM/NIHSEC/ P18-766 (14) and Monash University Human Research Ethics Committee (2018-14363-19627).

    Matched MeSH terms: Adaptation, Physiological
  9. Mansor MS, Nor SM, Ramli R, Sah SAM
    Behav Processes, 2018 Dec;157:73-79.
    PMID: 30193765 DOI: 10.1016/j.beproc.2018.09.001
    With the rapid growth of agricultural areas globally, forest birds increasingly encounter fragmented landscapes in which forest patches are surrounded by an agricultural plantation matrix, yet how birds respond behaviourally to this fragmentation is poorly understood. Information on microhabitat requirements of birds is scarce, but nevertheless essential to predicting adaptation of bird species to the patchy landscapes. We investigated foraging patterns of three tropical insectivorous birds, Green Iora Aegithina viridissima, Pin-striped Tit-Babbler Macronus gularis and Chestnut-winged Babbler Cyanoderma erythropterum, to determine whether they vary in foraging methods in different forest patches. Our study area encompassed old-logged lowland forest; one continuous forest and three forest patches. Observations were performed for 15 days every month for a period of 13 months. Information on foraging height, substrate, attack manoeuvres, and foliage density was collected independently for each foraging bird individual. All three species used different foraging substrates and attack manoeuvres in different habitat types. The Green Iora frequently used lower strata when foraging in forest patches as opposed to continuous forest, while the Pin-striped Tit-Babbler tended to forage in more dense vegetation in patches. Only Chestnut-winged Babbler displayed complete foraging plasticity across all study parameters. Different habitat features (e.g., edges, microclimates) between continuous forest and forest patches significantly influenced the foraging strategies of the study species. These changes in foraging strategies suggest that some Malaysian forest birds (e.g. generalist species) can respond behaviourally to fragmentation and habitat loss. Although continuous forest has critically important characteristics that need to be conserved, remnant forest patches are also important as ecological movement corridors and foraging grounds for birds.
    Matched MeSH terms: Adaptation, Physiological
  10. Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, et al.
    Biomed Res Int, 2014;2014:589341.
    PMID: 25110683 DOI: 10.1155/2014/589341
    Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.
    Matched MeSH terms: Adaptation, Physiological
  11. Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, et al.
    Biomed Res Int, 2018;2018:3158474.
    PMID: 30175125 DOI: 10.1155/2018/3158474
    Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
    Matched MeSH terms: Adaptation, Physiological
  12. Yip CH, Ghazali AK, Nathan S
    Biochem Soc Trans, 2020 04 29;48(2):569-579.
    PMID: 32167134 DOI: 10.1042/BST20190836
    Burkholderia pseudomallei (Bp) is the causative agent of melioidosis, a disease of the tropics with high clinical mortality rates. To date, no vaccines are approved for melioidosis and current treatment relies on antibiotics. Conversely, common misdiagnosis and high pathogenicity of Bp hamper efforts to fight melioidosis. This bacterium can be isolated from a wide range of niches such as waterlogged fields, stagnant water bodies, salt water bodies and from human and animal clinical specimens. Although extensive studies have been undertaken to elucidate pathogenesis mechanisms of Bp, little is known about how a harmless soil bacterium adapts to different environmental conditions, in particular, the shift to a human host to become a highly virulent pathogen. The bacterium has a large genome encoding an armory of factors that assist the pathogen in surviving under stressful conditions and assuming its role as a deadly intracellular pathogen. This review presents an overview of what is currently known about how the pathogen adapts to different environments. With in-depth understanding of Bp adaptation and survival, more effective therapies for melioidosis can be developed by targeting related genes or proteins that play a major role in the bacteria's survival.
    Matched MeSH terms: Adaptation, Physiological
  13. Huwaidi A, Pathak N, Syahir A, Ikeno S
    Biochem Biophys Res Commun, 2018 09 05;503(2):910-914.
    PMID: 29928878 DOI: 10.1016/j.bbrc.2018.06.095
    Ultraviolet (UV) radiation causes damage in all living organisms, including DNA damage that leads to cell death. Herein, we provide a new technique for UV radiation protection through intracellular short peptide expression. The late embryogenesis abundant (LEA) peptide, which functions as a shield that protects macromolecules from various abiotic stress, was obtained from the Polypedilum vanderplanki group 3 LEA protein. Recombinant Escherichia coli BL21 (DE3) expressing functional LEA short peptide in vivo were exposed to UVA and UVC radiation for 4, 6, and 8 h. E. coli transformants expressing the LEA peptide showed higher cell viability under both UVA and UVC treatment at all time points as compared with that of the control. Furthermore, the cells expressing LEA peptide showed a higher number of colony-forming units per dilution under UVA and UVC treatment. These results suggested that expression of the short peptide could be useful for the development of genetically modified organisms and in applications that require resilience of organisms to UV radiation.
    Matched MeSH terms: Adaptation, Physiological/genetics; Adaptation, Physiological/radiation effects*
  14. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
    Matched MeSH terms: Adaptation, Physiological/drug effects*
  15. Vedamanikam VJ, Shazilli NA
    Bull Environ Contam Toxicol, 2008 Jan;80(1):63-7.
    PMID: 18058048
    A study was conducted on the long term effects of nine heavy metals on the Chironomus plumosus and Culicoides furens larvae. This study tested the effect of the heavy metals on several generations of the larvae to observe the formation of increased hardiness against pollutants present within the aquatic habitat. From this study it was observed that susceptibility or sensitivity to heavy metals decreased with LC50 values becoming larger indicating a decreased toxicity level. Significant variations (p < 0.05) were observed between first generation and third generation culicoides for all metals and at all concentrations. Variations between third and fourth generation culicoides were also significantly different (p < 0.05) with the exception of chromium at 25 degrees C and nickel and lead at every temperature range group. The variation between all generations 4, 5 and 6 was found to be insignificant (p > 0.05). This would indicate that metal tolerance would have occurred in these generations and the effect of metals was less toxic to the culicoides. Generation 9 was found to have LC50 values (p > 0.05) the same as the LC50 values obtained in third generation culicoides. Thus it would appear that heavy metal resistance was developed when the organisms were exposed to prolonged exposure of the heavy metals but was lost when the organisms were bred in non-contaminated water.
    Matched MeSH terms: Adaptation, Physiological*
  16. Shaharuddin S, Muhamad II
    Carbohydr Polym, 2015 Mar 30;119:173-81.
    PMID: 25563958 DOI: 10.1016/j.carbpol.2014.11.045
    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic.
    Matched MeSH terms: Adaptation, Physiological/drug effects*
  17. Iryani MTM, Sorgeloos P, Danish-Daniel M, Tan MP, Wong LL, Mok WJ, et al.
    Cell Stress Chaperones, 2020 Nov;25(6):1099-1103.
    PMID: 32383141 DOI: 10.1007/s12192-020-01113-0
    Females of the brine shrimp Artemia franciscana produce either free-swimming nauplii via ovoviviparous pathway of reproduction or encysted embryos, known as cysts, via oviparous pathway, in which biological processes are arrested. While previous study has shown a crucial role of ATP-dependent molecular chaperone, heat shock protein 70 (Hsp70) in protecting A. franciscana nauplii against various abiotic and abiotic stressors, the function of this protein in diapausing embryos and cyst development, however, remains unknown. RNA interference (RNAi) was applied in this study to examine the role of Hsp70 in cyst development and stress tolerance, with the latter performed by desiccation and freezing, a common method used for diapause termination in Artemia cysts. Hsp70 knockdown was apparent in cysts released from females that were injected with Hsp70 dsRNA. The loss of Hsp70 affected neither the development nor morphology of the cysts. The time between fertilization and cyst release from Artemia females injected with Hsp70 dsRNA was delayed slightly, but the differences were not significant when compared to the controls. However, the hatching percentage of cysts which lacks Hsp70 were reduced following desiccation and freezing. Taken together, these results indicated that Hsp70 possibly plays a role in the stress tolerance but not in the development of diapause-destined embryos of Artemia. This research makes fundamental contributions to our understanding of the role molecular chaperone Hsp70 plays in Artemia, an excellent model organism for diapause studies of the crustaceans.
    Matched MeSH terms: Adaptation, Physiological*
  18. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
    Matched MeSH terms: Adaptation, Physiological/physiology*
  19. Chew KW, Khoo KS, Foo HT, Chia SR, Walvekar R, Lim SS
    Chemosphere, 2020 Dec 15;268:129322.
    PMID: 33359993 DOI: 10.1016/j.chemosphere.2020.129322
    With the rapid urbanisation happening around the world followed by the massive demand for clean energy resources, green cities play a pivotal role in building a sustainable future for the people. The continuing depletion of natural resources has led to the development of renewable energy with algae as the promising source. The high growth rate of microalgae and their strong bio-fixation ability to convert CO2 into O2 have been gaining attention globally and intensive research has been conducted regarding the microalgae benefits. The focus on potential of microalgae in contributing to the development of green cities is rising. The advantage of microalgae is their ability to gather energy from sunlight and carbon dioxide, followed by transforming the nutrients into biomass and oxygen. This leads to the creation of green cities through algae cultivation as waste and renewable materials can be put to good use. The challenges that arise when using algae and the future prospect in terms of SDGs and economy will also be covered in this review. The future of green cities can be enhanced with the adaptation of algae as the source of renewable plants to create a better outlook of an algae green city.
    Matched MeSH terms: Adaptation, Physiological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links