Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Govindan SS, Agamuthu P
    Waste Manag Res, 2014 Oct;32(10):1005-14.
    PMID: 25323145 DOI: 10.1177/0734242X14552551
    Waste management can be regarded as a cross-cutting environmental 'mega-issue'. Sound waste management practices support the provision of basic needs for general health, such as clean air, clean water and safe supply of food. In addition, climate change mitigation efforts can be achieved through reduction of greenhouse gas emissions from waste management operations, such as landfills. Landfills generate landfill gas, especially methane, as a result of anaerobic degradation of the degradable components of municipal solid waste. Evaluating the mode of generation and collection of landfill gas has posted a challenge over time. Scientifically, landfill gas generation rates are presently estimated using numerical models. In this study the Intergovernmental Panel on Climate Change's Waste Model is used to estimate the methane generated from a Malaysian sanitary landfill. Key parameters of the model, which are the decay rate and degradable organic carbon, are analysed in two different approaches; the bulk waste approach and waste composition approach. The model is later validated using error function analysis and optimum decay rate, and degradable organic carbon for both approaches were also obtained. The best fitting values for the bulk waste approach are a decay rate of 0.08 y(-1) and degradable organic carbon value of 0.12; and for the waste composition approach the decay rate was found to be 0.09 y(-1) and degradable organic carbon value of 0.08. From this validation exercise, the estimated error was reduced by 81% and 69% for the bulk waste and waste composition approach, respectively. In conclusion, this type of modelling could constitute a sensible starting point for landfills to introduce careful planning for efficient gas recovery in individual landfills.
    Matched MeSH terms: Air Pollutants/analysis*
  2. Abushammala MF, Noor Ezlin Ahmad Basri, Basri H, Ahmed Hussein El-Shafie, Kadhum AA
    Waste Manag Res, 2011 Aug;29(8):863-73.
    PMID: 20858637 DOI: 10.1177/0734242X10382064
    The decomposition of municipal solid waste (MSW) in landfills under anaerobic conditions produces landfill gas (LFG) containing approximately 50-60% methane (CH(4)) and 30-40% carbon dioxide (CO(2)) by volume. CH(4) has a global warming potential 21 times greater than CO(2); thus, it poses a serious environmental problem. As landfills are the main method for waste disposal in Malaysia, the major aim of this study was to estimate the total CH(4) emissions from landfills in all Malaysian regions and states for the year 2009 using the IPCC, 1996 first-order decay (FOD) model focusing on clean development mechanism (CDM) project applications to initiate emission reductions. Furthermore, the authors attempted to assess, in quantitative terms, the amount of CH(4) that would be emitted from landfills in the period from 1981-2024 using the IPCC 2006 FOD model. The total CH(4) emission using the IPCC 1996 model was estimated to be 318.8 Gg in 2009. The Northern region had the highest CH(4) emission inventory, with 128.8 Gg, whereas the Borneo region had the lowest, with 24.2 Gg. It was estimated that Pulau Penang state produced the highest CH(4) emission, 77.6 Gg, followed by the remaining states with emission values ranging from 38.5 to 1.5 Gg. Based on the IPCC 1996 FOD model, the total Malaysian CH( 4) emission was forecast to be 397.7 Gg by 2020. The IPCC 2006 FOD model estimated a 201 Gg CH(4) emission in 2009, and estimates ranged from 98 Gg in 1981 to 263 Gg in 2024.
    Matched MeSH terms: Air Pollutants/analysis*
  3. Latif MT, Dominick D, Ahamad F, Khan MF, Juneng L, Hamzah FM, et al.
    Sci Total Environ, 2014 Jun 1;482-483:336-48.
    PMID: 24662202 DOI: 10.1016/j.scitotenv.2014.02.132
    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.
    Matched MeSH terms: Air Pollutants/analysis*
  4. Lai SO, Huang J, Hopke PK, Holsen TM
    Sci Total Environ, 2011 Mar 1;409(7):1320-7.
    PMID: 21257194 DOI: 10.1016/j.scitotenv.2010.12.032
    In this project, several surrogate surfaces designed to directly measure Hg dry deposition were investigated. Static water surrogate surfaces (SWSS) containing deionized (DI), acidified water, or salt solutions, and a knife-edge surrogate surface (KSS) using quartz fiber filters (QFF), KCl-coated QFF and gold-coated QFF were evaluated as a means to directly measure mercury (Hg) dry deposition. The SWSS was hypothesized to collect deposited elemental mercury (Hg⁰), reactive gaseous/oxidized mercury (RGM), and mercury associated with particulate matter (Hg(p)) while the QFF, KCl-coated QFF, and gold-coated QFF on the KSS were hypothesized to collect Hg(p), RGM+Hg(p), and Hg⁰+RGM+Hg(p), respectively. The Hg flux measured by the DI water was significantly smaller than that captured by the acidified water, probably because Hg⁰ was oxidized to Hg²+ which stabilized the deposited Hg and decreased mass transfer resistance. Acidified BrCl, which efficiently oxidizes Hg⁰, captured significantly more Hg than other solutions. However, of all collection media, gold-coated QFFs captured 6 to 100 times greater Hg mass than the other surfaces, probably because there is no surface resistance for Hg⁰ deposition to gold surfaces. In addition, the Hg⁰ concentration is usually 100-1000 times higher than RGM and Hg(p). For all other media, co-located samples were not significantly different, and the combination of daytime plus nighttime results were comparable to 24-h samples, implying that Hg⁰, RGM and Hg(p) were not released after they deposited nor did the surfaces reach equilibrium with the atmosphere. Based on measured Hg ambient air concentrations and fluxes, dry deposition velocities of RGM and Hg⁰ to DI water and other surfaces were 5.6±5.4 and 0.005-0.68 cm s⁻¹ in this study, respectively. These results suggest surrogate surfaces can be used to measure Hg dry deposition; however, extrapolating the results to natural surface can be challenging.
    Matched MeSH terms: Air Pollutants/analysis*
  5. Omar NY, Mon TC, Rahman NA, Abas MR
    Sci Total Environ, 2006 Oct 1;369(1-3):76-81.
    PMID: 16766020
    The concentrations and distributions of particle bound polycyclic aromatic hydrocarbons (PAHs) collected over a 10 month period in ambient environment, at street levels as well as during a hazy episode are reported. Ambient and street level distributions of PAHs were similar and their occurrence was attributed to vehicular emissions. However, in haze particles, a different pattern of PAHs was observed, characterized by relatively low levels of benzo[a]pyrene (BaP) and high levels of benzofluoranthenes (BFs). The BaP equivalency results showed that the potential health risk associated with haze smoke particles was 4 times higher than that of street level particles whereas the lowest health risk was associated with ambient atmospheric particles.
    Matched MeSH terms: Air Pollutants/analysis*
  6. Lan TT, Binh NT
    Sci Total Environ, 2012 Dec 15;441:248-57.
    PMID: 23142415 DOI: 10.1016/j.scitotenv.2012.08.086
    A new home-made diffusive bag-type passive sampler called Lanwatsu was developed for benzene, toluene, ethylbenzene and xylene monitoring in roadside air. The passive samplers were outdoor validated and deployed together with two commercial passive samplers, Ultra I SKC Inc. and Radiello, for daily roadside air monitoring in East Asian cities including HoChiMinh, Hanoi, Cantho, Danang, Vungtau, Hue (Vietnam), Kuala Lumpur (Malaysia), Kyoto, Osaka (Japan), Nanjing (China) and Singapore in 2011. High daily benzene concentrations of 87, 52, 32, 23, 13, 12 and 48 µg/m³ were observed in HoChiMinh, Hanoi, Cantho, Danang, Hue, Vung Tau (Vietnam), and Kuala Lumpur (Malaysia), respectively. Kyoto and Osaka (Japan) were clean with daily benzene concentrations below 2.3 μg/m³. The daily benzene concentrations in Nanjing (China) and Singapore were 5.6 and 6.9 μg/m³, respectively. The three passive samplers were equivalent. Passive sampling by the Lanwatsu passive sampler is acceptable for daily outdoor benzene monitoring.
    Matched MeSH terms: Air Pollutants/analysis*
  7. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Air Pollutants/analysis*
  8. Hamsan H, Ho YB, Zaidon SZ, Hashim Z, Saari N, Karami A
    Sci Total Environ, 2017 Dec 15;603-604:381-389.
    PMID: 28633115 DOI: 10.1016/j.scitotenv.2017.06.096
    Tanjung Karang, Selangor, is widely known for its paddy cultivation activity and hosts the third largest paddy field in Malaysia. Pesticides contamination in agriculture fields has become an unavoidable problem, as pesticides are used to increase paddy productivity and reduce plant disease. Human exposure to agrichemicals is common and could results in both acute and chronic health effects, such as acute and chronic neurotoxicity. This study aims to determine the concentrations of commonly used pesticides (azoxystrobin, buprofezin, chlorantraniliprole, difenoconazole, fipronil, imidacloprid, isoprothiolane, pretilachlor, propiconazole, pymetrozine, tebuconazole, tricyclazole, and trifloxystrobin) in personal air samples and their associated health risks among paddy farmers. Eighty-three farmers from Tangjung Karang, Selangor were involved in this study. A solid sorbent tube was attached to the farmer's breathing zone with a clip, and an air pump was fastened to the belt to collect personal air samples. Pesticides collected in the XAD-2 resin were extracted with acetone, centrifuged, concentrated via nitrogen blowdown and reconstituted with 1mL of 3:1 ultrapure water/HPLC-grade methanol solution. The extract was analyzed using ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). The target compounds were detected with a maximum concentration reaching up to 462.5ngm-3 (fipronil). The hazard quotient (HQ) was less than 1 and the hazard index (HI) value was 3.86×10-3, indicating that the risk of pesticides related diseases was not significant. The lifetime cancer risk (LCR) for pymetrozine was at an acceptable level (LCR<10-6) with 4.10×10-8. The results reported in this study can be beneficial in terms of risk management within the agricultural community.
    Matched MeSH terms: Air Pollutants/analysis*
  9. Sulong NA, Latif MT, Khan MF, Amil N, Ashfold MJ, Wahab MIA, et al.
    Sci Total Environ, 2017 Dec 01;601-602:556-570.
    PMID: 28575833 DOI: 10.1016/j.scitotenv.2017.05.153
    This study aims to determine PM2.5concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM2.5was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM2.5samples were collected from the centre of the city using a high-volume air sampler (HVS). The results showed that the mean PM2.5concentrations collected during pre-haze, haze and post-haze periods were 24.5±12.0μgm-3, 72.3±38.0μgm-3and 14.3±3.58μgm-3, respectively. The highest concentration of PM2.5during haze episode was five times higher than World Health Organisation (WHO) guidelines. Inorganic compositions of PM2.5, including trace elements and water soluble ions were determined using inductively coupled plasma-mass spectrometry (ICP-MS) and ion chromatography (IC), respectively. The major trace elements identified were K, Al, Ca, Mg and Fe which accounted for approximately 93%, 91% and 92% of the overall metals' portions recorded during pre-haze, haze and post-haze periods, respectively. For water-soluble ions, secondary inorganic aerosols (SO42-, NO3-and NH4+) contributed around 12%, 43% and 16% of the overall PM2.5mass during pre-haze, haze and post-haze periods, respectively. During haze periods, the predominant source identified using PMF was secondary inorganic aerosol (SIA) and biomass burning where the NAME simulations indicate the importance of fires in Sumatra, Indonesia. The main source during pre-haze and post-haze were mix SIA and road dust as well as mineral dust, respectively. The highest non-carcinogenic health risk during haze episode was estimated among the infant group (HI=1.06) while the highest carcinogenic health risk was estimated among the adult group (2.27×10-5).
    Matched MeSH terms: Air Pollutants/analysis*
  10. Khan MF, Hamid AH, Bari MA, Tajudin ABA, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1195-1206.
    PMID: 30308807 DOI: 10.1016/j.scitotenv.2018.09.072
    Equatorial warming conditions in urban areas can influence the particle number concentrations (PNCs), but studies assessing such factors are limited. The aim of this study was to evaluate the level of size-resolved PNCs, their potential deposition rate in the human respiratory system, and probable local and transboundary inputs of PNCs in Kuala Lumpur. Particle size distributions of a 0.34 to 9.02 μm optical-equivalent size range were monitored at a frequency of 60 s between December 2016 and January 2017 using an optical-based compact scanning mobility particle sizer (SMPS). Diurnal and correlation analysis showed that traffic emissions and meteorological confounding factors were potential driving factors for changes in the PNCs (Dp ≤1 μm) at the modeling site. Trajectory modeling showed that a PNC <100/cm3 was influenced mainly by Indo-China region air masses. On the other hand, a PNC >100/cm3 was influenced by air masses originating from the Indian Ocean and Indochina regions. Receptor models extracted five potential sources of PNCs: industrial emissions, transportation, aged traffic emissions, miscellaneous sources, and a source of secondary origin coupled with meteorological factors. A respiratory deposition model for male and female receptors predicted that the deposition flux of PM1 (particle mass ≤1 μm) into the alveolar (AL) region was higher (0.30 and 0.25 μg/h, respectively) than the upper airway (UA) (0.29 and 0.24 μg/h, respectively) and tracheobronchial (TB) regions (0.02 μg/h for each). However, the PM2.5 deposition flux was higher in the UA (2.02 and 1.68 μg/h, respectively) than in the TB (0.18 and 0.15 μg/h, respectively) and the AL regions (1.09 and 0.91 μg/h, respectively); a similar pattern was also observed for PM10.
    Matched MeSH terms: Air Pollutants/analysis*
  11. Gendeh BS, Mujahid SH, Murad S, Rizal M
    Med J Malaysia, 2004 Oct;59(4):522-9.
    PMID: 15779586 MyJurnal
    Atopy is defined as the genetic propensity to develop immunoglobulin E antibodies in response to exposure to allergens and assessed by skin prick test (SPT) responses to common allergens, which may contribute to the development of the clinical disorders (phenotype). Although it is generally agreed that atopy is an important risk factor for allergic diseases such as asthma, rhinitis, and eczema, the extent to which atopy accounts for these diseases is controversial. One hundred forty one children (up to 12 years) were skin prick tested to evaluate 16 foods common to the Malaysian diet and 4 common aeroallergens. Eighty-five percent of patients had positive SPT reactivity. The most commonly implicated aeroallergen and food allergen was house dust mite (HDM) and Prawn. Seventy percent had positive SPT reactivity results to HDM and 24.8% to prawns. Fifty five percent were positive to more than one allergen and 17.7% positive to single aeroallergen. The prevalence of atopy in children with history of eczema was 90%. The incidence of HDM and food allergy especially crabs and prawns, is significantly greater in Malaysian Children with rhinitis symptoms.
    Matched MeSH terms: Air Pollutants/analysis
  12. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Air Pollutants/analysis*
  13. Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, et al.
    PLoS One, 2014;9(2):e88303.
    PMID: 24523884 DOI: 10.1371/journal.pone.0088303
    There are few studies on associations between respiratory health and allergens, fungal and bacterial compounds in schools in tropical countries. The aim was to study associations between respiratory symptoms in pupils and ethnicity, chemical microbial markers, allergens and fungal DNA in settled dust in schools in Malaysia. Totally 462 pupils (96%) from 8 randomly selected secondary schools in Johor Bahru, Malaysia, participated. Dust was vacuumed from 32 classrooms and analysed for levels of different types of endotoxin as 3-hydroxy fatty acids (3-OH), muramic acid, ergosterol, allergens and five fungal DNA sequences. Multiple logistic regression was applied. Totally 13.1% pupils reported doctor's diagnosed asthma, 10.3% wheeze and 21.1% pollen or pet allergy. Indian and Chinese children had less atopy and asthma than Malay. Carbon dioxide levels were low (380-690 ppm). No cat (Fel d1), dog (Can f 1) or horse allergens (Ecu cx) were detected. The levels of Bloomia tropicalis (Blo t), house dust mite allergens (Der p 1, Der f 1, Der m 1) and cockroach allergens (Per a 1 and Bla g 1) were low. There were positive associations between levels of Aspergillus versicolor DNA and daytime breathlessness, between C14 3-OH and respiratory infections and between ergosterol and doctors diagnosed asthma. There were negative (protective) associations between levels of C10 3-OH and wheeze, between C16 3-OH and day time and night time breathlessness, between cockroach allergens and doctors diagnosed asthma. Moreover there were negative associations between amount of fine dust, total endotoxin (LPS) and respiratory infections. In conclusion, endotoxin at school seems to be mainly protective for respiratory illness but different types of endotoxin could have different effects. Fungal contamination measured as ergosterol and Aspergillus versicolor DNA can be risk factors for respiratory illness. The ethnical differences for atopy and asthma deserve further attention.
    Matched MeSH terms: Air Pollutants/analysis
  14. Chin YSJ, De Pretto L, Thuppil V, Ashfold MJ
    PLoS One, 2019;14(3):e0212206.
    PMID: 30870439 DOI: 10.1371/journal.pone.0212206
    As in many nations, air pollution linked to rapid industrialization is a public health and environmental concern in Malaysia, especially in cities. Understanding awareness of air pollution and support for environmental protection from the general public is essential for informing governmental approaches to dealing with this problem. This study presents a cross-sectional survey conducted in the Klang Valley and Iskandar conurbations to examine urban Malaysians' perception, awareness and opinions of air pollution. The survey was conducted in two languages, English and Malay, and administered through the online survey research software, Qualtrics. The survey consisted of three sections, where we collected sociodemographic information, information on the public perception of air quality and the causes of air pollution, information on public awareness of air pollution and its related impacts, and information on attitudes towards environmental protection. Of 214 respondents, over 60% were positive towards the air quality at both study sites despite the presence of harmful levels of air pollution. The air in the Klang Valley was perceived to be slightly more polluted and causing greater health issues. Overall, the majority of respondents were aware that motor vehicles represent the primary pollution source, yet private transport was still the preferred choice of transportation mode. A generally positive approach towards environmental protection emerged from the data. However, participants showed stronger agreement with protection actions that do not involve individual effort. Nonetheless, we found that certain segments of the sample (people owning more than three vehicles per household and those with relatives who suffered from respiratory diseases) were significantly more willing to personally pay for environmental protection compared to others. Implications point to the need for actions for spreading awareness of air pollution to the overall population, especially with regards to its health risks, as well as strategies for increasing the perception of behavioural control, especially with regards to motor vehicles' usage.
    Matched MeSH terms: Air Pollutants/analysis
  15. Huang Y, Li J, Xu Y, Xu W, Cheng Z, Liu J, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):194-9.
    PMID: 24462236 DOI: 10.1016/j.marpolbul.2014.01.007
    Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively.
    Matched MeSH terms: Air Pollutants/analysis*
  16. Muhammad S, Long X
    Mar Pollut Bull, 2020 Sep;158:111422.
    PMID: 32753206 DOI: 10.1016/j.marpolbul.2020.111422
    China's seaborne foreign oil supply through the Malacca Strait is facing security challenges due to territorial disputes, pirate attacks, and geopolitics. To overcome these challenges, China plans to import oil through one of the corridors of the Belt and Road Initiative (BRI)-the China-Pakistan Economic Corridor (CPEC). This study estimated and compared ship emissions and their externalities associated with seaborne oil supply from the top five oil suppliers to China through the existing shipping route via the Malacca Strait and proposed route via CEPC. Ship activity-based methodology is applied to estimate the emissions of air pollutants (CO2, NOx, SO2, PM10, and CO) during cruising, maneuvering, and hoteling periods. The results show that the total ship emissions of China's seaborne oil supply can be significantly reduced from 6.2 million tons to 2.1 million tons via the CPEC route. While external cost can be reduced up to 65.9% via the CPEC route.
    Matched MeSH terms: Air Pollutants/analysis*
  17. Mokhtar MM, Taib RM, Hassim MH
    J Air Waste Manag Assoc, 2014 Aug;64(8):867-78.
    PMID: 25185389
    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).
    Matched MeSH terms: Air Pollutants/analysis*
  18. Abualqumboz MS, Malakahmad A, Mohammed NI
    J Air Waste Manag Assoc, 2016 06;66(6):597-608.
    PMID: 27249105 DOI: 10.1080/10962247.2016.1154115
    Landfills throughout the world are contributing to the global warming problem. This is due to the existence of the most important greenhouse gases (GHG) in landfill gas (LFG); namely, methane (CH4) and carbon dioxide (CO2). The aim of this paper is quantifying the total potential emissions, as well as the variation in production with time of CH4 from a proposed landfill (El Fukhary landfill) in the Gaza Strip, Palestine. Two different methods were adopted in order to quantify the total potential CH4 emissions; the Default methodology based on the intergovernmental panel on climate change (IPCC) 1996 revised guidelines and the Landfill Gas Emissions model (LandGEM V3.02) provided by the United States Environmental Protection Agency (EPA). The second objective of the study has been accomplished using the Triangle gas production model. The results obtained from both Default and LandGEM methods were found to be nearly the same. For 25 years of disposing MSW, El Fukhary landfill expected to have potential CH4 emissions of 1.9542 ± 0.0037 ×109 m3. Triangle model showed that the peak production in term of CH4 would occur in 2043; 28 years beyond the open year. Moreover, the model shows that 50 % of the gas will be produced approximately at the middle of the total duration of gas production. Proper control of Methane emissions from El Fukhary landfill is highly suggested in order to reduce the harmful effects on the environment.

    IMPLICATIONS: Although, GHG emissions are extensively discussed in the developed countries throughout the world, it has gained little concern in the developing countries because they are forced most of the time to put environmental concerns at the end of their priority list. The paper shows that developing countries have to start recognizing their fault and change their way of dealing with environmental issues especially GHG emissions (mainly Methane and carbon dioxide). The authors estimated the potential methane emissions from a proposed central landfill that has been approved to be built in Palestine, a country that is classified as a developing country.

    Matched MeSH terms: Air Pollutants/analysis*
  19. Jabal MH, Abdulmunem AR, Abd HS
    J Air Waste Manag Assoc, 2019 01;69(1):109-118.
    PMID: 30215577 DOI: 10.1080/10962247.2018.1523070
    Plant (vegetable) oil has been evaluated as a substitute for mineral oil-based lubricants because of its natural and environmentally friendly characteristics. Availability of vegetable oil makes it a renewable source of bio-oils. Additionally, vegetable oil-based lubricants have shown potential for reducing hydrocarbon and carbon dioxide (CO2) emissions when utilized in internal combustion (IC) engines and industrial operations. In this study, sunflower oil was investigated to study its lubricant characteristics under different loads using the four-ball tribometer and the exhaust emissions were tested using a four-stroke, single-cylinder diesel engine. All experimental works conformed to American Society for Testing and Materials standard (ASTM D4172-B). Under low loads, sunflower oil showed adequate tribological characteristics (antifriction and antiwear) compared with petroleum oil samples. The results also demonstrated that the sunflower oil-based lubricant was more effective in reducing the emission levels of carbon monoxide (CO), CO2, and hydrocarbons under different test conditions. Therefore, sunflower oil has the potential to be used as lubricant of mating components.Implications: An experimental investigation of the characteristics of nonedible sunflower oil tribological behaviors and potential as a renewable source for biofluids alternative to the petroleum oils was carried out. The level of emissions of a four-stroke, single-cylinder diesel engine using sunflower oil as a biolubricant was evaluated.
    Matched MeSH terms: Air Pollutants/analysis*
  20. Mahmudur Rahman M, Kim KH
    J Hazard Mater, 2012 May 15;215-216:233-42.
    PMID: 22424818 DOI: 10.1016/j.jhazmat.2012.02.055
    A number of offensive odorants including volatile organic compounds (VOCs), reduced sulfur compounds (RSCs), carbonyls, and ammonia were measured along with several reference pollutants (like benzene (B), CS(2), SO(2), CO, and total hydrocarbon (THC)) from combusted fumes of barbecue charcoals produced from five different countries (Korea, China, Indonesia, Malaysia, and the US). Although the emission concentrations of most odorants were generally below the reference guideline set by the malodor prevention law in Korea, the mean concentration of some aldehydes (acetaldehyde, propionaldehyde, and isovaleraldehyde) and ammonia exceeded those guidelines. As such, aldehydes were the most dominant odorant released from charcoal combustion followed by VOC and ammonia. If odorant levels of charcoal products are compared, there are great distinctions between the products of different countries. If comparison is made using the concept of the sum of odor intensity (SOI), the magnitude of SOI for the charcoal products from the five different countries varied in the order of 4.30 (Korea), 3.10 (Indonesia), 2.97 (China), 2.76 (Malaysia), and 2.76 (the US).
    Matched MeSH terms: Air Pollutants/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links