Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Vimala S, Norhanom AW, Yadav M
    Br. J. Cancer, 1999 Apr;80(1-2):110-6.
    PMID: 10389986
    Zingiberaceae rhizomes commonly used in the Malaysian traditional medicine were screened for anti-tumour promoter activity using the short-term assay of inhibition of 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced Epstein-Barr virus early antigen (EBV-EA) in Raji cells. The inhibition of TPA-induced EBV-EA was detected using the indirect immunofluorescence assay (IFA) and Western blot technique. The indirect IFA detected the expression/inhibition of EBV-EA-D (diffused EA antigen), whereas the Western blot technique detected the expression/inhibition of both EBV-EA-D and EA-R (restricted EA antigen). Seven rhizomes were found to possess inhibitory activity towards EBV activation, induced by TPA; they are: Curcuma domestica, C. xanthorrhiza, Kaempferia galanga, Zingiber cassumunar, Z. officinale, Z. officinale (red variety), and Z. zerumbet. A cytotoxicity assay was carried out to determine the toxicity of the Zingiberaceae rhizome extracts. The rhizome extracts that exhibited EBV activation inhibitory activity had no cytotoxicity effect in Raji cells. Therefore, the present study shows that several Zingiberaceae species used in Malaysian traditional medicine contain naturally occurring non-toxic compounds that inhibit the EBV activation, which, if further investigated, could contribute in the development of cancer prevention methods at the tumour-promoting stage.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  2. Hamizah S, Roslida AH, Fezah O, Tan KL, Tor YS, Tan CI
    Asian Pac J Cancer Prev, 2012;13(6):2533-9.
    PMID: 22938417
    Annona muricata L (Annonaceae), commonly known as soursop has a long, rich history in herbal medicine with a lengthy recorded indigenous use. It had also been found to be a promising new anti-tumor agent in numerous in vitro studies. The present investigation concerns chemopreventive effects in a two-stage model of skin papillomagenesis. Chemopreventive effects of an ethanolic extract of A. muricata leaves (AMLE) was evaluated in 6-7 week old ICR mice given a single topical application of 7,12-dimethylbenza(α)anthracene (DMBA 100 μg/100 μl acetone) and promotion by repeated application of croton oil (1% in acetone/ twice a week) for 10 weeks. Morphological tumor incidence, burden and volume were measured, with histological evaluation of skin tissue. Topical application of AMLE at 30, 100 and 300 mg/kg significantly reduced DMBA/croton oil induced mice skin papillomagenesis in (i) peri-initiation protocol (AMLE from 7 days prior to 7 days after DMBA), (ii) promotion protocol (AMLE 30 minutes after croton oil), or (iii) both peri-initiation and promotion protocol (AMLE 7 days prior to 7 day after DMBA and AMLE 30 minutes after croton oil throughout the experimental period), in a dose dependent manner (p<0.05) as compared to carcinogen-treated control. Furthermore, the average latent period was significantly increased in the AMLE-treated group. Interestingly, At 100 and 300 mg/ kg, AMLE completely inhibited the tumor development in all stages. Histopathological study revealed that tumor growth from the AMLE-treated groups showed only slight hyperplasia and absence of keratin pearls and rete ridges. The results, thus suggest that the A.muricata leaves extract was able to suppress tumor initiation as well as tumor promotion even at lower dosage.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  3. Ooi TC, Chan KM, Sharif R
    Nutr Cancer, 2017 Feb-Mar;69(2):201-210.
    PMID: 28094570 DOI: 10.1080/01635581.2017.1265132
    Cancer is one of the major causes of death worldwide, and the incidence and mortality rates of cancer are expected to rise tremendously in the near future. Despite a better understanding of cancer biology and advancement in cancer management, current strategies in cancer treatment remain costly and ineffective. Hence, instead of putting more efforts to search for new cancer cures, attention has now been shifted to the development of cancer chemopreventive agents as a preventive measure for cancer formation. It is well known that neoplastic transformation of cells is multifactorial, and the occurrence of oxidative stress, chronic inflammation, and genomic instability events has been implicated in the carcinogenesis of cells. Zinc l-carnosine (ZnC), which is clinically used as gastric ulcer treatment in Japan, has been suggested to have the potential in preventing cancer development. Multiple studies have revealed that ZnC possesses potent antioxidant, anti-inflammatory, and genomic stability enhancement effects. Thus, this review provides some mechanistic insight into the antioxidant, anti-inflammatory, and genomic stability enhancement effects of ZnC in relevance to its chemopreventive potential.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  4. Shanmugam MK, Lee JH, Chai EZ, Kanchi MM, Kar S, Arfuso F, et al.
    Semin Cancer Biol, 2016 10;40-41:35-47.
    PMID: 27038646 DOI: 10.1016/j.semcancer.2016.03.005
    The association between chronic inflammation and cancer development has been well documented. One of the major obstacles in cancer treatment is the persistent autocrine and paracrine activation of pro-inflammatory transcription factors such as nuclear factor-κB, signal transducer and activator of transcription 3, activator protein 1, fork head box protein M1, and hypoxia-inducible factor 1α in a wide variety of tumor cell lines and patient specimens. This, in turn, leads to an accelerated production of cellular adhesion molecules, inflammatory cytokines, chemokines, anti-apoptotic molecules, and inducible nitric oxide synthase. Numerous medicinal plant-derived compounds have made a tremendous impact in drug discovery research endeavors, and have been reported to modulate the activation of diverse oncogenic transcription factors in various tumor models. Moreover, novel therapeutic combinations of standard chemotherapeutic drugs with these agents have significantly improved patient survival by making cancer cells more susceptible to chemotherapy and radiotherapy. In this review, we critically analyze the existing literature on the modulation of diverse transcription factors by various natural compounds and provide views on new directions for accelerating the discovery of novel drug candidates derived from Mother Nature.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  5. Pabalan N, Jarjanazi H, Ozcelik H
    J Gastrointest Cancer, 2014 Sep;45(3):334-41.
    PMID: 24756832 DOI: 10.1007/s12029-014-9610-2
    BACKGROUND: Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls.

    METHODS: We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome.

    RESULTS: The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) 

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  6. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2007 Oct;304(1-2):61-9.
    PMID: 17487455
    Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259-263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167-172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  7. Norazalina S, Norhaizan ME, Hairuszah I, Norashareena MS
    Exp. Toxicol. Pathol., 2010 May;62(3):259-68.
    PMID: 19464858 DOI: 10.1016/j.etp.2009.04.002
    This study is carried out to determine the potential of phytic acid extracted from rice bran in the suppression of colon carcinogenesis induced by azoxymethane (AOM) in rats. Seventy-two male Sprague-Dawley rats were divided into 6 groups with 12 rats in each group. The intended rats for cancer treatment received two intraperitoneal injections of AOM in saline (15mg/kg bodyweight) over a 2-week period. The treatments of phytic acid were given in two concentrations: 0.2% (w/v) and 0.5% (w/v) during the post-initiation phase of carcinogenesis phase via drinking water. The colons of the animals were analyzed for detection and quantification of aberrant crypt foci (ACF) after 8 weeks of treatment. The finding showed treatment with 0.2% (w/v) extract phytic acid (EPA) gave the greatest reduction in the formation of ACF. In addition, phytic acid significantly suppressed the number of ACF in the distal, middle and proximal colon as compared to AOM alone (p<0.05). For the histological classification of ACF, treatment with 0.5% (w/v) commercial phytic acid (CPA) had the highest percentage (71%) of non-dysplastic ACF followed by treatment with 0.2% (w/v) EPA (61%). Administration of phytic acid also reduced the incidence and multiplicity of total tumors even though there were no significant differences between groups. In conclusion, this study found the potential value of phytic acid extracted from rice bran in reducing colon cancer risk in rats.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  8. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  9. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(7):4235-8.
    PMID: 23991982
    Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  10. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K
    Nutr Cancer, 2009;61(3):367-73.
    PMID: 19373610 DOI: 10.1080/01635580802582736
    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  11. Ali AM, Mackeen MM, Intan-Safinar I, Hamid M, Lajis NH, el-Sharkawy SH, et al.
    J Ethnopharmacol, 1996 Sep;53(3):165-9.
    PMID: 8887024
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  12. Hsum YW, Yew WT, Hong PL, Soo KK, Hoon LS, Chieng YC, et al.
    Planta Med, 2011 Jan;77(2):152-7.
    PMID: 20669087 DOI: 10.1055/s-0030-1250203
    Chronic inflammation is one of the predisposing factors for neoplastic transformation. Targeting inflammation through suppression of the pro-inflammatory pathway by dietary phytochemicals provides an important strategy for cancer prevention. Maslinic acid is a novel natural triterpenoid known to inhibit proliferation and induce apoptosis in some tumor cell lines. Although maslinic acid has cytotoxic and pro-apoptotic effects on cancer cells, the underlying mechanisms of its effects on the inflammatory pathway have yet to be elucidated. It has been reported that abnormal expression of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) causes promotion of cellular proliferation, suppression of apoptosis, enhancement of angiogenesis and invasiveness. In the present study, the suppressive effect of maslinic acid on COX-2 expression and the binding activity of upstream transcription factors NF- κB and AP-1, which are known to regulate COX-2 transcriptional activation, were assessed using Raji cells. The anti-inflammatory action of maslinic acid was benchmarked against oleanolic acid and other standard drugs. Western blot analysis and electrophoretic mobility shift assay (EMSA) were employed to analyze COX-2 expression as well as NF- κB and AP-1 binding activity. Our results showed that maslinic acid suppresses COX-2 expression in a concentration-dependent manner. Likewise, the constitutive nuclear NF- κB (p65) activity as well as phorbol 12-myristate 13-acetate (PMA)- and sodium N-butyrate (SnB)-induced AP-1 binding activity in Raji cells were significantly reduced following treatment with maslinic acid. Since maslinic acid suppresses COX-2 expression in Raji cells at concentrations that also lowered the NF- κB (p65) and AP-1 binding activity, it is possible that the suppression of COX-2 by this natural triterpenoid might be achieved, at least in part, via the NF- κB and AP-1 signaling pathways.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  13. Md Roduan MR, Abd Hamid R, Mohtarrudin N
    BMC Complement Altern Med, 2019 Sep 03;19(1):238.
    PMID: 31481122 DOI: 10.1186/s12906-019-2650-1
    BACKGROUND: Annonacin, an annonaceous acetogenin isolated from Annona muricata has been reported to be strongly cytotoxic against various cell lines, in vitro. Nevertheless, its effect against in vivo tumor promoting activity has not been reported yet. Therefore, this study was aimed to investigate antitumor-promoting activity of annonacin via in vivo two-stage mouse skin tumorigenesis model and its molecular pathways involved.

    METHODS: Mice were initiated with single dose of 7,12-dimethylbenz[α]anthracene (DMBA) (390 nmol/100 μL) followed by, in subsequent week, repeated promotion (twice weekly; 22 weeks) with 12-O-tetradecanoylphorbol-13-acetate (TPA) (1.7 nmol/100 μL). Annonacin (85 nM) and curcumin (10 mg/kg; reference) were, respectively, applied topically to DMBA/TPA-induced mice 30 min before each TPA application for 22 weeks. Upon termination, histopathological examination of skin, liver and kidney as well as genes and proteins expression analysis were conducted to elucidate the potential mechanism of annonacin.

    RESULTS: With comparison to the carcinogen control, Annonacin significantly increased the tumor latency period and reduced the tumor incidence, tumor burden and tumor volume, respectively. In addition, it also suppressed tumorigenesis manifested by significant reduction of hyperkeratosis, dermal papillae and number of keratin pearls on skin tissues. Annonacin also appeared to be non-toxic to liver and kidney. Significant modulation of both AKT, ERK, mTOR, p38, PTEN and Src genes and proteins were also observed in annonacin-targeted signaling pathway(s) against tumorigenesis.

    CONCLUSIONS: Collectively, results of this study indicate that annonacin is a potential therapeutic compound targeting tumor promoting stage in skin tumorigenesis by modulating multiple gene and protein in cancer signaling pathways without apparent toxicity.

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  14. Wen CT, Hussein SZ, Abdullah S, Karim NA, Makpol S, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2012;13(4):1605-10.
    PMID: 22799375
    Gelam and Nenas monofloral honeys were investigated in this study for their chemopreventive effects against HT 29 colon cancer cells. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H- tetrazolim) assays showed more effective inhibition of colon cancer cells proliferation by Gelam honey with IC₅₀ values of 39.0 mg/ml and 85.5 mg/ml respectively after 24 hours of treatment. Alkali comet assays revealed both honeys increased DNA damage significantly in a dose dependent manner. In addition, annexin V-FITC/PI flow cytometry demonstrated that at IC₅₀ concentrations and above, both Gelam and Nenas honeys induced apoptosis significantlyat values higher than for necrosis (p<0.05). Measurement of prostaglandin E₂ (PGE₂) confirmed that Gelam and Nenas honeys reduced its production in H₂O₂ inflammation-induced colon cancer cells. In conclusion, our study indicated and confirmed that both Gelam and Nenas honeys are capable of suppressing the growth of HT 29 colon cancer cells by inducing apoptosis and suppressing inflammation.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  15. Wee LH, Morad NA, Aan GJ, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    Asian Pac J Cancer Prev, 2015;16(15):6549-56.
    PMID: 26434873
    The PI3K-Akt-mTOR, Wnt/β-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, Wnt/β-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with IC50 values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, β-catenin, Gsk3β, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, Wnt/β catenin signaling pathways and induction of apoptosis pathway.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  16. Mackeen MM, Ali AM, Lajis NH, Kawazu K, Hassan Z, Amran M, et al.
    J Ethnopharmacol, 2000 Oct;72(3):395-402.
    PMID: 10996278
    Crude extracts (methanol) of various parts, viz. the leaves, fruits, roots, stem and trunk bark, of Garcinia atroviridis were screened for antimicrobial, cytotoxic, brine shrimp toxic, antitumour-promoting and antioxidant activities. The crude extracts exhibited predominantly antibacterial activity with the root extract showing the strongest inhibition against the test bacteria at a minimum inhibitory dose (MID) of 15.6 microg/disc. Although all the extracts failed to inhibit the growth of most of the test fungi, significant antifungal activity against Cladosporium herbarum was exhibited by most notably the fruit (MID: 100 microg), and the leaf (MID: 400 microg) extracts. None of the extracts were significantly cytotoxic, and lethal towards brine shrimps. The root, leaf, trunk and stem bark extracts (except for the fruits) showed strong antioxidant activity exceeding that of the standard antioxidant, alpha-tocopherol. Antitumour-promoting activity (>95% inhibition) was shown by the fruit, leaf, stem and trunk bark extracts.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  17. Surien O, Ghazali AR, Masre SF
    Histol Histopathol, 2020 Oct;35(10):1159-1170.
    PMID: 32893871 DOI: 10.14670/HH-18-247
    BACKGROUND: Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.

    METHODS: A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.

    RESULTS: All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.

    CONCLUSIONS: The underlying molecular mechanisms of PS in lung SCC should be further studied.

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  18. Moghadamtousi SZ, Goh BH, Chan CK, Shabab T, Kadir HA
    Molecules, 2013 Aug 30;18(9):10465-83.
    PMID: 23999722 DOI: 10.3390/molecules180910465
    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  19. Ho KL, Chong PP, Yazan LS, Ismail M
    J Med Food, 2012 Dec;15(12):1096-102.
    PMID: 23216109 DOI: 10.1089/jmf.2012.2245
    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  20. Abdull Razis AF, Konsue N, Ioannides C
    Asian Pac J Cancer Prev, 2015;16(7):2679-83.
    PMID: 25854346
    BACKGROUND: Phenethyl isothiocyanate (PEITC), the most comprehensively studied aromatic isothiocyanate, has been shown to act as an anti-cancer agent mainly through modulation of biotransformation enzymes responsible for metabolizing carcinogens in the human body. Humans are often exposed to carcinogenic factors, some of which through the diet, such as polycyclic aromatic hydrocarbon benzo[a]pyrene via the consumption of over-cooked meats. Inhibition of the enzymes responsible for the bioactivation of this carcinogen, for example CYP1A1, the major enzyme required for polycyclic aromatic hydrocarbons (PAHs) bioactivation, is recognized as a chemoprevention strategy.

    OBJECTIVE: To evaluate the inhibitory effects of PEITC against benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA and apoprotein levels.

    MATERIALS AND METHODS: Precision cut rat liver slices were treated with benzo[a]pyrene at 1 and 5 μM in the presence of PEITC (1-25 μM) for 24 hours, followed by determination of CYP1A1 mRNA and apoprotein levels using quantitative polymerase chain reaction and immunoblotting.

    RESULTS: Findings revealed that PEITC inhibited benzo[a]pyrene-induced rise in rat liver CYP1A1 mRNA in a dose-dependent manner as well as the apoprotein levels of CYP1A.

    CONCLUSIONS: It was demonstrated that PEITC can directly inhibit the bioactivation of benzo[a]pyrene, indicating chemopreventive potential.

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links