Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, et al.
    PLoS One, 2016;11(3):e0152415.
    PMID: 27023787 DOI: 10.1371/journal.pone.0152415
    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
    Matched MeSH terms: Antigens, Protozoan/genetics
  2. Ching XT, Lau YL, Fong MY, Nissapatorn V, Andiappan H
    Biomed Res Int, 2014;2014:690529.
    PMID: 24987700 DOI: 10.1155/2014/690529
    Toxoplasma gondii infects all warm-blooded animals, including humans, causing serious public health problems and great economic loss for the food industry. Commonly used serological tests require costly and hazardous preparation of whole Toxoplasma lysate antigens from tachyzoites. Here, we have evaluated an alternative method for antigen production, which involved a prokaryotic expression system. Specifically, we expressed T. gondii dense granular protein-5 (GRA5) in Escherichia coli and isolated it by affinity purification. The serodiagnostic potential of the purified recombinant GRA5 (rGRA5) was tested through Western blot analysis against 212 human patient serum samples. We found that rGRA5 protein was 100% specific for analysis of toxoplasmosis-negative human sera. Also, rGRA5 was able to detect acute and chronic T. gondii infections (sensitivities of 46.8% and 61.2%, resp.).
    Matched MeSH terms: Antigens, Protozoan/genetics
  3. Barber BE, William T, Grigg MJ, Piera K, Yeo TW, Anstey NM
    J Clin Microbiol, 2013 Apr;51(4):1118-23.
    PMID: 23345297 DOI: 10.1128/JCM.03285-12
    Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
    Matched MeSH terms: Antigens, Protozoan/genetics
  4. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
    Matched MeSH terms: Antigens, Protozoan/genetics
  5. Han ET, Song TE, Park JH, Shin EH, Guk SM, Kim TY, et al.
    Am J Trop Med Hyg, 2004 Dec;71(6):745-9.
    PMID: 15642964
    To study the genetic diversity of re-emerging Plasmodium vivax in the Republic of Korea, nucleotide sequence variations at the merozoite surface protein-3alpha (PvMSP-3alpha) locus were analyzed using 24 re-emerging isolates and 4 isolates from imported cases. Compared with the well known Belem strain (Brazil), a large number of amino acid substitutions, deletions, and insertions were found at the locus of the isolates examined. The Korean isolates were divided into two allelic types; type I (15 isolates), similar to the Belem strain, and type II (9), similar to the Chess strain (New Guinea). Isolates from imported cases were classified into three types; type III (1 from Malaysia), similar to type B from western Thailand, type IV (1 each from Indonesia and India), and type V (1 from Pakistan), both being new types. Our results have shown that the MSP-3alpha locus of re-emerging Korean P. vivax is dimorphic with two allelic types coexisting in the endemic area.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  6. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: Antigens, Protozoan/genetics
  7. Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y
    J Clin Microbiol, 2010 Oct;48(10):3698-702.
    PMID: 20660217 DOI: 10.1128/JCM.00462-10
    Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5%) than the SAG1-LAMP (80%), B1-LAMP (80%), and nested PCR (62.5%). All the LAMP assays and nested PCR were 100% specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans.
    Matched MeSH terms: Antigens, Protozoan/genetics
  8. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  9. Lau YL, Fong MY, Idris MM, Ching XT
    PMID: 23082548
    Detection of Toxoplasma gondii infection is essential in pregnant women and immunosuppressed patients. Numerous studies have shown that the recombinant production of several Toxoplasma antigens, including dense granule antigens (GRAs) has high potential as diagnostic reagents. In the present study, we produced GRA2 using Pichia pastoris system. RNA of T. gondii RH strain tachyzoite was used as a template to produce cDNA clones of full-length GRA2 via reverse transcriptase PCR. Amplicons were inserted into pPICZalpha A and the recombinant plasmid transformed into P. pastoris, X-33 strain. The expressed recombinant protein was identified by SDS-PAGE and Western blotting. A recombinant protein of -28 kDa was produced, which could be detected by toxoplasmosis positive human sera indicating that the recombinant protein retained its antigenicity. The present study indicates that P. pastoris-expressed GRA2 should be useful for detection of Toxoplasma infection.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  10. Loh FK, Nathan S, Chow SC, Fang CM
    Pathog Glob Health, 2021 09;115(6):392-404.
    PMID: 33525974 DOI: 10.1080/20477724.2021.1881369
    The proficiency of Salmonella Typhi to induce cell-mediated immunity has allowed its exploitation as a live vector against the obligate intracellular protozoan Toxoplasma gondii. T. gondii vaccine research is of great medical value due to the lack of a suitable toxoplasmosis vaccine. In the present work, we integrated T. gondii antigen into a growth-dependent chromosome locus guaBA of S. Typhi CVD910 strain to form recombinant S. Typhi monovalent CVD910-SAG1 expressed T. gondii SAG1 antigen and monovalent CVD910-GRA2 expressed T. gondii GRA2 antigen. Furthermore, a low-copy stabilized recombinant plasmid encoding SAG1 antigen was transformed into CVD910-GRA2 to form bivalent CVD910-GS strain. An osmolarity-regulated promoter was also incorporated to control the gene transcription, whereas clyA export protein was included to translocate the antigen out of the cytoplasm. Both CVD910-GRA2 and CVD910-GS displayed healthy growth fitness and readily expressed the encoded T. gondii antigens. When administered in vivo, CVD910-GS successfully induced both humoral and cellular immunity in the immunized BALB/c mice, and extended mice survival against virulent T. gondii. In particular, the mice immunized with bivalent CVD910-GS presented the highest titers of IgG, percentages of CD4+ T, CD8+ T, B cells and memory T cells, and total IgG+ memory B cells as compared to the CVD910-GRA2 and control strains. The CVD910-GS group also generated mixed Th1/Th2 cytokine profile with secretions of IFN-ɣ, IL-2 and IL-10. This study demonstrated the importance of enhancing live vector fitness to sustain heterologous antigen expression for eliciting robust immune responses and providing effective protection against pathogen.
    Matched MeSH terms: Antigens, Protozoan/genetics
  11. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  12. Lau YL, Thiruvengadam G, Lee WW, Fong MY
    Parasitol Res, 2011 Sep;109(3):871-8.
    PMID: 21455621 DOI: 10.1007/s00436-011-2315-6
    In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P 
    Matched MeSH terms: Antigens, Protozoan/genetics
  13. Lau YL, Fong MY
    Exp Parasitol, 2008 Jul;119(3):373-8.
    PMID: 18457835 DOI: 10.1016/j.exppara.2008.03.016
    The full length surface antigen 2 (SAG2) gene of the protozoan parasite Toxoplasma gondii was cloned and intracellularly expressed in the Pichia pastoris expression system. The molecular weight of the expressed recombinant SAG2 (36 kDa) was much larger than the native SAG2 (22 kDa). This discrepancy in size was due to hyperglycosylation, as deglycosylation assay reduced the size of the recombinant SAG2 to 22 kDa. Despite being hyperglycosylated, the recombinant SAG2 reacted strongly with pooled anti-Toxoplasma human serum, pooled anti-Toxoplasma mouse serum and a SAG2-specific monoclonal antibody. The glycosylated recombinant SAG2 was further evaluated in Western blot and in-house enzyme-linked immunosorbent assay (ELISA) using 80 human serum samples, including confirmed early acute (IgM positive, IgG negative; n=20), acute (IgM positive, IgG positive; n=20) and chronic (IgM negative, IgG positive; n=20) toxoplasmosis patients, and toxoplasmosis negative control patients (n=20). Results of the Western blot showed that the recombinant SAG2 reacted with all 60 samples of the toxoplasmosis cases but not with the Toxoplasma-negative samples. The sensitivity of in-house ELISA was 80%, 95% and 100% for early acute, acute and chronic patients' serum samples, respectively. Vaccination study showed that serum from mice immunised with the glycosylated recombinant SAG2 reacted specifically with the native SAG2 of T. gondii. The mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P<0.01) and their survival time was increased compared to controls. Therefore, the present study shows that the P. pastoris-derived recombinant SAG2 was specific and suitable for use as antigen for detecting anti-Toxoplasma IgG and IgM antibodies. The vaccination study showed that recombinant SAG2 protein was immunoprotective in mice against lethal challenge.
    Matched MeSH terms: Antigens, Protozoan/genetics
  14. De Silva JR, Lau YL, Fong MY
    PLoS One, 2016;11(7):e0158998.
    PMID: 27391270 DOI: 10.1371/journal.pone.0158998
    Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP)-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61%) and ELISA (100%). Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49). In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.
    Matched MeSH terms: Antigens, Protozoan/genetics
  15. De Silva JR, Lau YL, Fong MY
    Parasit Vectors, 2017 01 03;10(1):2.
    PMID: 28049516 DOI: 10.1186/s13071-016-1935-1
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi has been reported to cause significant numbers of human infection in South East Asia. Its merozoite surface protein-3 (MSP3) is a protein that belongs to a multi-gene family of proteins first found in Plasmodium falciparum. Several studies have evaluated the potential of P. falciparum MSP3 as a potential vaccine candidate. However, to date no detailed studies have been carried out on P. knowlesi MSP3 gene (pkmsp3). The present study investigates the genetic diversity, and haplotypes groups of pkmsp3 in P. knowlesi clinical samples from Peninsular Malaysia.

    METHODS: Blood samples were collected from P. knowlesi malaria patients within a period of 4 years (2008-2012). The pkmsp3 gene of the isolates was amplified via PCR, and subsequently cloned and sequenced. The full length pkmsp3 sequence was divided into Domain A and Domain B. Natural selection, genetic diversity, and haplotypes of pkmsp3 were analysed using MEGA6 and DnaSP ver. 5.10.00 programmes.

    RESULTS: From 23 samples, 48 pkmsp3 sequences were successfully obtained. At the nucleotide level, 101 synonymous and 238 non-synonymous mutations were observed. Tests of neutrality were not significant for the full length, Domain A or Domain B sequences. However, the dN/dS ratio of Domain B indicates purifying selection for this domain. Analysis of the deduced amino acid sequences revealed 42 different haplotypes. Neighbour Joining phylogenetic tree and haplotype network analyses revealed that the haplotypes clustered into two distinct groups.

    CONCLUSIONS: A moderate level of genetic diversity was observed in the pkmsp3 and only the C-terminal region (Domain B) appeared to be under purifying selection. The separation of the pkmsp3 into two haplotype groups provides further evidence of the existence of two distinct P. knowlesi types or lineages. Future studies should investigate the diversity of pkmsp3 among P. knowlesi isolates in North Borneo, where large numbers of human knowlesi malaria infection still occur.

    Matched MeSH terms: Antigens, Protozoan/genetics*
  16. Boush MA, Djibrine MA, Mussa A, Talib M, Maki A, Mohammed A, et al.
    Sci Rep, 2020 07 30;10(1):12822.
    PMID: 32733079 DOI: 10.1038/s41598-020-69756-8
    In remote areas of malaria-endemic countries, rapid diagnostic tests (RDTs) have dramatically improved parasitological confirmation of suspected malaria cases, especially when skilled microscopists are not available. This study was designed to determine the frequency of Plasmodium falciparum isolates with histidine-rich protein 2 (pfhrp2) gene deletion as one of the possible factors contributing to the failure of PfHRP2-based RDTs in detecting malaria. A total of 300 blood samples were collected from several health centres in Nyala City, Western Sudan. The performance of PfHRP2-based RDTs in relation to microscopy was examined and the PCR-confirmed samples were investigated for the presence of pfhrp2 gene. A total of 113 out of 300 patients were P. falciparum positive by microscopy. Among them, 93.81% (106 out of 113) were positives by the PfHRP2 RDTs. Seven isolates were identified as false negative on the basis of the RDTs results. Only one isolate (0.9%; 1/113) potentially has pfhrp2 gene deletion. The sensitivity and specificity of PfHRP2-based RDTs were 93.81% and 100%, respectively. The results provide insights into the pfhrp2 gene deletion amongst P. falciparum population from Sudan. However, further studies with a large and systematic collection from different geographical settings across the country are needed.
    Matched MeSH terms: Antigens, Protozoan/genetics*
  17. Mussa A, Talib M, Mohamed Z, Hajissa K
    BMC Res Notes, 2019 Jun 11;12(1):334.
    PMID: 31186056 DOI: 10.1186/s13104-019-4361-6
    OBJECTIVE: Rapid diagnostic tests (RDTs) play a crucial role in the management and control of malaria infection. The histidine-rich protein 2 (PfHRP-2) based RDTs are the most commonly used RDTs for malaria diagnosis in Sudan. Deletion of pfhrp2 in Plasmodium falciparum genome affect the accuracy of PfHRP-2 based RDT kits. This study aimed to identify molecular variation of pfhrp2 among suspected malaria patients from different clinics in Omdurman, Sudan.

    RESULTS: A noticeable variation between the RDT (Alltest Biotech, China) and nPCR results was observed, for RDT 78% (46/59) were P. falciparum positive, 6.8% (4/59) were co-infected with both P. falciparum and Plasmodium vivax, 15.3% (9/59) were negative by the RDT. However, when the nPCR was applied only 44.1% (26/59) and 55.9% (33/59) was P. falciparum positive and negative respectively. The pfhrp2 was further amplified form all nPCR positive samples. Only 17 DNA samples were positive from the 26 positive P. falciparum, interestingly, variation in band sizes was observed and further confirmed by DNA sequencing, and sequencing analysis revealed a high-level of genetic diversity of the pfhrp2 gene in the parasite population from the study area. However, despite extreme sequence variation, diversity of PfHRP2 does not appear to affect RDT performance.

    Matched MeSH terms: Antigens, Protozoan/genetics*
  18. Othman AS, Marin-Mogollon C, Salman AM, Franke-Fayard BM, Janse CJ, Khan SM
    Expert Rev Vaccines, 2017 Jul;16(7):1-13.
    PMID: 28525963 DOI: 10.1080/14760584.2017.1333426
    INTRODUCTION: Transgenic malaria parasites expressing foreign genes, for example fluorescent and luminescent proteins, are used extensively to interrogate parasite biology and host-parasite interactions associated with malaria pathology. Increasingly transgenic parasites are also exploited to advance malaria vaccine development. Areas covered: We review how transgenic malaria parasites are used, in vitro and in vivo, to determine protective efficacy of different antigens and vaccination strategies and to determine immunological correlates of protection. We describe how chimeric rodent parasites expressing P. falciparum or P. vivax antigens are being used to directly evaluate and rank order human malaria vaccines before their advancement to clinical testing. In addition, we describe how transgenic human and rodent parasites are used to develop and evaluate live (genetically) attenuated vaccines. Expert commentary: Transgenic rodent and human malaria parasites are being used to both identify vaccine candidate antigens and to evaluate both sub-unit and whole organism vaccines before they are advanced into clinical testing. Transgenic parasites combined with in vivo pre-clinical testing models (e.g. mice) are used to evaluate vaccine safety, potency and the durability of protection as well as to uncover critical protective immune responses and to refine vaccination strategies.
    Matched MeSH terms: Antigens, Protozoan/genetics
  19. Othman AS, Lin JW, Franke-Fayard BM, Kroeze H, van Pul FJA, Chevalley-Maurel S, et al.
    Mol Biochem Parasitol, 2018 Sep;224:44-49.
    PMID: 30053393 DOI: 10.1016/j.molbiopara.2018.07.009
    The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.
    Matched MeSH terms: Antigens, Protozoan/genetics
  20. Chua CY, Lee PC, Lau TY
    J Genet, 2017 Sep;96(4):653-663.
    PMID: 28947714
    The apical membrane antigen-1 (AMA-1) of Plasmodium spp. is a merozoite surface antigen that is essential for the recognition and invasion of erythrocytes. Polymorphisms occurring in this surface antigen will cause major obstacles in developing effective malaria vaccines based on AMA-1. The objective of this study was to characterize ama1 gene in Plasmodium knowlesi isolates from Sabah. DNA was extracted from blood samples collected from Keningau, Kota Kinabalu and Kudat. The Pkama1 gene was amplified using nested PCR and subjected to bidirectional sequencing. Analysis of DNA sequence revealed that most of the nucleotide polymorphisms were synonymous and concentrated in domain I of PkAMA-1. Forteen haplotypes were identified based on amino acid variations and haplotype K5 was the most common haplotype. dN/dS ratios implied that purifying selection was prevalent in Pkama1 gene. Fu and Li's D and F values further provided evidence of negative selection acting on domain II of Pkama1. Lownucleotide diversitywas also detected for the Pkama1 sequences,which is similar to reports on Pkama1 from Peninsular Malaysia and Sarawak. The presence of purifying selection and low nucleotide diversity indicated that domain II of Pkama1 can be used as a target for vaccine development.
    Matched MeSH terms: Antigens, Protozoan/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links