Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Vishalkumar P, Jayaprakash NS, Desai PK, Krishnan V, Vijayalakshmi MA
    Trop Biomed, 2020 Dec 01;37(4):1050-1061.
    PMID: 33612757 DOI: 10.47665/tb.37.4.1050
    OBJECTIVE: To evaluate the sensitivity and the stability of the monoclonal antibodies (Aa3c10, b10c1), against truncated Histidine-rich protein 2 (PfHRP2), developed using smart polymer, poly N-isopropylacrylamide, as adjuvant for malarial diagnostic applications in comparison with the available commercial antibodies.

    METHODS: Two hybridoma clones (Aa3c10, b10c1) were used for the production of ascites in BALB/c mice. Purification of monoclonal antibodies from the ascites was carried out using affinity columns. The thermal stability study of monoclonal antibodies was done by storing it at 37°C and 45°C for thirty days. The stored antibodies were analyzed using SDS-PAGE and flow-through device where the antigenantibody interaction was visualized by Protein A colloidal gold solution. Sensitivity was determined by endpoint dilution ELISA and the dissociation constant by competitive ELISA. Sensitive pair optimization was done by sandwich ELISA using biotinylated antibodies. Prototype preparation for lateral flow assay had a colloidal gold-based detection system.

    RESULTS: Thermal stability experiments showed that both mAbs (Aa3c10; b10c1) are stable up to thirty days at 45°C while the commercially available mAbs were stable up to fifteen days only. Compared to commercial antibodies, the mAb Aa3c10, showed the highest sensitivity in end-point titre. In sensitive pair optimization, it was observed that the mAb, b10c1, as a detector and the mAb, Aa3c10, as a capture antibody showed the highest absorbance to detect 50pg/ml PfHRP2 antigen. The prototype formulation of lateral flow assay using the mAbs (Aa3c10; b10c1) showed good reactivity with WHO panel and no false-positive results were observed with twenty clinically negative samples and five P. vivax positive samples.

    CONCLUSIONS: The novel monoclonal antibodies (Aa3c10, b10c1) against truncated PfHRP2, could be a strong potential candidates that can be included in making RDTs with better sensitivity and stability.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  2. Muh F, Kim N, Nyunt MH, Firdaus ER, Han JH, Hoque MR, et al.
    PLoS Negl Trop Dis, 2020 06;14(6):e0008323.
    PMID: 32559186 DOI: 10.1371/journal.pntd.0008323
    Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  3. Liew CC, Lau YL, Fong MY, Cheong FW
    Am J Trop Med Hyg, 2020 05;102(5):1068-1071.
    PMID: 32189613 DOI: 10.4269/ajtmh.19-0836
    Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
    Matched MeSH terms: Antigens, Protozoan/immunology
  4. Sheela DS, Chandramathi S, Suresh K
    Trop Biomed, 2020 Mar 01;37(1):210-217.
    PMID: 33612732
    Blastocystis sp. is an enteric protozoan parasite of humans and many animals. Blastocystis sp. subtype 3 (ST3) proves to be the highest frequency case in most populations around the world and it is further distinguished into symptomatic and asymptomatic isolates based on the clinical symptoms exhibited by infected individuals. Phenotypic and genotypic studies implicate the distinctiveness of this parasite which may describe its pathogenesis. However, the antigenic distinctiveness which describes the antibody mediated cell lysis of this parasite has not been explored. This study was aimed to identify the cross-reactivity and cytotoxicity effect between three isolates of symptomatic and asymptomatic Blastocystis sp. ST3 respectively. Antigen specificity and diversity of this parasite was performed by coculturing sera (10-fold dilution) obtained from mice immunised with Blastocystis sp. symptomatic and asymptomatic antigens and the respective Blastocystis sp. ST3 live cells through complement dependant cell cytotoxicity (CDC) assay. The results obtained has shown that, the sera (at 10-fold diluted concentration) from symptomatic and asymptomatic solubilised antigen immunised mice were able to specifically lyse the respective live parasites with an average percentage of 82% and 86% respectively. There were almost 50% crossreactivity observed between the three isolates of Blastocystis sp. ST3 from symptomatic and asymptomatic group proving high antigen diversity or rather low antigen specificity within the same group. However, there was only 17% cross-reactivity observed between the mice sera and parasitic cells of different groups (symptomatic vs asymptomatic isolates) suggesting high specificity between these two groups. We, for the first time have proven that through CDC analysis there were epitopes dissimilarities between Blastocystis sp. ST3 symptomatic and asymptomatic isolates which may allow the parasite to set up diverse immune modulations such as imbalanced Th1/Th2 responses in an infected host.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  5. Nadzirah TTI, Yik FM, Ling LY
    Korean J Parasitol, 2020 Feb;58(1):1-5.
    PMID: 32145721 DOI: 10.3347/kjp.2020.58.1.1
    Sarcocystosis was diagnosed worldwide by serodiagnostic tests utilising the whole parasite, for which the protozoa were maintained in vitro are more costly. In this study, antigenicity of Sarcocystis falcatula recombinant protein (rSfSAG4) was investigated towards the local communities of Pangkor and Tioman Islands and its seroprevalence was surveyed in these islands. A total of 348 human sera were tested using rSfSAG4 by Western blot and ELISA. High prevalence of sarcocystosis was observed in Tioman Island (80.6%) than in Pangkor Island (50.0%) by Western blot. In ELISA, the seroprevalence observed in Tioman Island was 45.9%, whereas in Pangkor Island 63.0%. In other parasitic infections, the prevalence was 34.0% by Western blot and 46.0% by ELISA. In healthy control group, 7% by Western blot and 8% by ELISA showed positivity to rSfSAG4. It is suggested SfSAG4 is a candidate antigen to measure seroprevalence of sarcocystosis.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  6. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  7. Oyong DA, Wilson DW, Barber BE, William T, Jiang J, Galinski MR, et al.
    J Infect Dis, 2019 11 06;220(12):1950-1961.
    PMID: 31419296 DOI: 10.1093/infdis/jiz407
    BACKGROUND: Complement-fixing antibodies are important mediators of protection against Plasmodium falciparum malaria. However, complement-fixing antibodies remain uncharacterized for Plasmodium vivax malaria. P. vivax merozoite surface protein 3α (PvMSP3α) is a target of acquired immunity and a potential vaccine candidate.

    METHODS: Plasma from children and adults with P. vivax malaria in Sabah, Malaysia, were collected during acute infection, 7 and 28 days after drug treatment. Complement-fixing antibodies and immunoglobulin M and G (IgM and IgG), targeting 3 distinctive regions of PvMSP3α, were measured by means of enzyme-linked immunosorbent assay.

    RESULTS: The seroprevalence of complement-fixing antibodies was highest against the PvMSP3α central region (77.6%). IgG1, IgG3, and IgM were significantly correlated with C1q fixation, and both purified IgG and IgM were capable of mediating C1q fixation to PvMSP3α. Complement-fixing antibody levels were similar between age groups, but IgM was predominant in children and IgG3 more prevalent in adults. Levels of functional antibodies increased after acute infection through 7 days after treatment but rapidly waned by day 28.

    CONCLUSION: Our study demonstrates that PvMSP3α antibodies acquired during P. vivax infection can mediate complement fixation and shows the important influence of age in shaping these specific antibody responses. Further studies are warranted to understand the role of these functional antibodies in protective immunity against P. vivax malaria.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  8. Boyle MJ, Chan JA, Handayuni I, Reiling L, Feng G, Hilton A, et al.
    Sci Adv, 2019 09;5(9):eaax4489.
    PMID: 31579826 DOI: 10.1126/sciadv.aax4489
    Most studies on human immunity to malaria have focused on the roles of immunoglobulin G (IgG), whereas the roles of IgM remain undefined. Analyzing multiple human cohorts to assess the dynamics of malaria-specific IgM during experimentally induced and naturally acquired malaria, we identified IgM activity against blood-stage parasites. We found that merozoite-specific IgM appears rapidly in Plasmodium falciparum infection and is prominent during malaria in children and adults with lifetime exposure, together with IgG. Unexpectedly, IgM persisted for extended periods of time; we found no difference in decay of merozoite-specific IgM over time compared to that of IgG. IgM blocked merozoite invasion of red blood cells in a complement-dependent manner. IgM was also associated with significantly reduced risk of clinical malaria in a longitudinal cohort of children. These findings suggest that merozoite-specific IgM is an important functional and long-lived antibody response targeting blood-stage malaria parasites that contributes to malaria immunity.
    Matched MeSH terms: Antigens, Protozoan/immunology
  9. Atique Ahmed M, Kang HJ, Quan FS
    Korean J Parasitol, 2019 Aug;57(4):445-450.
    PMID: 31533414 DOI: 10.3347/kjp.2019.57.4.445
    Human infections due to the monkey malaria parasite Plasmodium knowlesi is increasingly being reported from most Southeast Asian countries specifically Malaysia. The parasite causes severe and fatal malaria thus there is a need for urgent measures for its control. In this study, the level of polymorphisms, haplotypes and natural selection of full-length pkmsp8 in 37 clinical samples from Malaysian Borneo along with 6 lab-adapted strains were investigated. Low levels of polymorphism were observed across the full-length gene, the double epidermal growth factor (EGF) domains were mostly conserved, and non-synonymous substitutions were absent. Evidence of strong negative selection pressure in the non-EGF regions were found indicating functional constrains acting at different domains. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. This is the first study to genetically characterize the full-length msp8 gene from clinical isolates of P. knowlesi from Malaysia; however, further functional characterization would be useful for future rational vaccine design.
    Matched MeSH terms: Antigens, Protozoan/immunology
  10. Lew MH, Noordin R, Monsur Alam Khan M, Tye GJ
    Pathog Glob Health, 2018 10;112(7):387-394.
    PMID: 30332344 DOI: 10.1080/20477724.2018.1536854
    Toxoplasmosis, a parasitic disease in human and animals, is caused by Toxoplasma gondii. Our previous study has led to the discovery of a novel RAP domain binding protein antigen (TgRA15), an apparent in-vivo induced antigen recognised by antibodies in acutely infected individuals. This study is aimed to evaluate the humoral response and cytokine release elicited by recombinant TgRA15 protein in C57BL/6 mice, demonstrating its potential as a candidate vaccine for Toxoplasma gondii infection. In this study, the recombinant TgRA15 protein was expressed in Escherichia coli, purified and refolded into soluble form. C57BL/6 mice were immunised intradermally with the antigen and CASAC (Combined Adjuvant for Synergistic Activation of Cellular immunity). Antigen-specific humoral and cell-mediated responses were evaluated using Western blot and ELISA. The total IgG, IgG1 and IgG2a antibodies specific to the antigen were significantly increased in treatment group compare to control group. A higher level of interferon gamma (IFN-γ) secretion was demonstrated in the mice group receiving booster doses of rTgRA15 protein, suggesting a potential Th1-mediated response. In conclusion, the rTgRA15 protein has the potential to generate specific antibody response and elicit cellular response, thus potentially serve as a vaccine candidate against T. gondii infection.
    Matched MeSH terms: Antigens, Protozoan/immunology
  11. Othman AS, Lin JW, Franke-Fayard BM, Kroeze H, van Pul FJA, Chevalley-Maurel S, et al.
    Mol Biochem Parasitol, 2018 09;224:44-49.
    PMID: 30053393 DOI: 10.1016/j.molbiopara.2018.07.009
    The transmission-blocking vaccine candidate Pfs48/45 from the human malaria parasite Plasmodium falciparum is known to be difficult to express in heterologous systems, either as full-length protein or as correctly folded protein fragments that retain conformational epitopes. In this study we express full-length Pfs48/45 in the rodent parasite P. berghei. Pfs48/45 is expressed as a transgene under control of the strong P. berghei schizont-specific msp1 gene promoter (Pfs48/45@PbMSP1). Pfs48/45@PbMSP1 schizont-infected red blood cells produced full-length Pfs48/45 and the structural integrity of Pfs48/45 was confirmed using a panel of conformation-specific monoclonal antibodies that bind to different Pfs48/45 epitopes. Sera from mice immunized with transgenic Pfs48/45@PbMSP1 schizonts showed strong transmission-reducing activity in mosquitoes infected with P. falciparum using standard membrane feeding. These results demonstrate that transgenic rodent malaria parasites expressing human malaria antigens may be used as means to evaluate immunogenicity and functionality of difficult to express malaria vaccine candidate antigens.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  12. Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY
    Exp Parasitol, 2018 Sep;192:19-24.
    PMID: 30031120 DOI: 10.1016/j.exppara.2018.07.009
    Amoebae from the genus Acanthamoeba are facultative pathogens of humans and other animals. In humans they most frequently infect the eye causing a sight threatening infection known as Acanthamoeba keratitis (AK), and also cause an often fatal encephalitis (GAE). A mannose-binding protein (MBP) has been identified as being important for Acanthamoeba infection especially in AK. This lectin has previously been characterized from Acanthamoeba castellanii as consisting of multiple 130 kDa subunits. MBP expression correlates with pathogenic potential and is expressed in a number of Acanthamoeba species. Here we report the purification of a similar lectin from Acanthamoeba culbertsoni and the production of a monoclonal antibody to it. The A. culbertsoni MBP was isolated by affinity chromatography using α-D-mannose agarose and has an apparent molecular weight of 83 kDa. The monoclonal antibody is an IgM that is useful in both western blots and immunofluorescence. We expect that this antibody will be useful in the study of the pathology of A. culbertsoni and in its identification in clinical samples.
    Matched MeSH terms: Antigens, Protozoan/immunology
  13. Tessema SK, Utama D, Chesnokov O, Hodder AN, Lin CS, Harrison GLA, et al.
    Infect Immun, 2018 08;86(8).
    PMID: 29784862 DOI: 10.1128/IAI.00485-17
    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  14. Muh F, Lee SK, Hoque MR, Han JH, Park JH, Firdaus ER, et al.
    Malar J, 2018 Jul 27;17(1):272.
    PMID: 30049277 DOI: 10.1186/s12936-018-2420-4
    BACKGROUND: The rapid process of malaria erythrocyte invasion involves ligand-receptor interactions. Inducing antibodies against specific ligands or receptors that abrogate the invasion process is a key challenge for blood stage vaccine development. However, few candidates were reported and remain to be validated for the discovery of new vaccine candidates in Plasmodium knowlesi.

    METHODS: In order to investigate the efficacy of pre-clinical vaccine candidates in P. knowlesi-infected human cases, this study describes an in vitro invasion inhibition assay, using a P. knowlesi strain adapted to in vitro growth in human erythrocytes, PkA1-H.1. Recombinant proteins of P. knowlesi Duffy binding protein alpha (PkDBPα) and apical membrane antigen 1 (PkAMA1) were produced in Escherichia coli system and rabbit antibodies were generated from immune animals.

    RESULTS: PkDBPα and PkAMA1 recombinant proteins were expressed as insoluble and produced as a functional refolded form for this study. Antibodies against PkDBPα and PkAMA1 specifically recognized recombinant proteins and native parasite proteins in schizont-stage parasites on the merozoite organelles. Single and combination of anti-PkDBPα and anti-PkAMA1 antibodies elicited strong growth inhibitory effects on the parasite in concentration-dependent manner. Meanwhile, IgG prevalence of PkDBPα and PkAMA1 were observed in 13.0 and 46.7% in human clinical patients, respectively.

    CONCLUSION: These data provide support for the validation of in vitro growth inhibition assay using antibodies of DBPα and AMA1 in human-adapted P. knowlesi parasite PkA1-H.1 strain.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  15. Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, et al.
    PLoS Negl Trop Dis, 2018 Jun;12(6):e0006457.
    PMID: 29902183 DOI: 10.1371/journal.pntd.0006457
    BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease.

    METHODOLOGY/PRINCIPAL FINDINGS: Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses.

    CONCLUSIONS/SIGNIFICANCE: The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  16. Muh F, Ahmed MA, Han JH, Nyunt MH, Lee SK, Lau YL, et al.
    Sci Rep, 2018 04 10;8(1):5781.
    PMID: 29636493 DOI: 10.1038/s41598-018-23728-1
    The Plasmodium falciparum apical asparagine (Asn)-rich protein (AARP) is one of malarial proteins, and it has been studied as a candidate of malaria subunit vaccine. Basic characterization of PvAARP has been performed with a focus on its immunogenicity and localization. In this study, we further analyzed the immunogenicity of PvAARP, focusing on the longevity of the antibody response, cross-species immunity and invasion inhibitory activity by using the primate malaria parasite Plasmodium knowlesi. We found that vivax malaria patient sera retained anti-PvAARP antibodies for at least one year without re-infection. Recombinant PvAARP protein was strongly recognized by knowlesi malaria patients. Antibody raised against the P. vivax and P. knowlesi AARP N-termini reacted with the apical side of the P. knowlesi merozoites and inhibited erythrocyte invasion by P. knowlesi in a concentration-dependent manner, thereby suggesting a cross-species nature of anti-PvAARP antibody against PkAARP. These results can be explained by B cell epitopes predicted in conserved surface-exposed regions of the AARP N-terminus in both species. The long-lived anti-PvAARP antibody response, cross-reactivity, and invasion inhibitory activity of anti-PvAARP support a critical role of AARP during the erythrocyte invasion and suggest that PvAARP induces long-lived cross-species protective immunity against P. vivax and P. knowlesi.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  17. Hajissa K, Zakaria R, Suppian R, Mohamed Z
    BMC Infect Dis, 2017 12 29;17(1):807.
    PMID: 29284420 DOI: 10.1186/s12879-017-2920-9
    BACKGROUND: The inefficiency of the current tachyzoite antigen-based serological assays for the serodiagnosis of Toxoplasma gondii infection mandates the need for acquirement of reliable and standard diagnostic reagents. Recently, epitope-based antigens have emerged as an alternative diagnostic marker for the achievement of highly sensitive and specific capture antigens. In this study, the diagnostic utility of a recombinant multiepitope antigen (USM.TOXO1) for the serodiagnosis of human toxoplasmosis was evaluated.

    METHODS: An indirect enzyme-linked immunosorbent assay (ELISA) was developed to evaluate the usefulness of USM.TOXO1 antigen for the detection of IgG antibodies against Toxoplasma gondii in human sera. Whereas the reactivity of the developed antigen against IgM antibody was evaluated by western blot and Dot enzyme immunoassay (dot-EIA) analysis.

    RESULTS: The diagnostic performance of the new antigens in IgG ELISA was achieved at the maximum values of 85.43% and 81.25% for diagnostic sensitivity and specificity respectively. The USM.TOXO1 was also proven to be reactive with anti- T. gondii IgM antibody.

    CONCLUSIONS: This finding makes the USM.TOXO1 antigen an attractive candidate for improving the toxoplasmosis serodiagnosis and demonstrates that multiepitope antigens could be a potential and promising diagnostic marker for the development of high sensitive and accurate assays.

    Matched MeSH terms: Antigens, Protozoan/immunology*
  18. Maspi N, Ghaffarifar F, Sharifi Z, Dalimi A, Khademi SZ
    Malays J Pathol, 2017 Dec;39(3):267-275.
    PMID: 29279589
    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (p<0.05). IFN-γ/ Interleukin (IL)-4 and IgG2a/IgG1 ratios demonstrated the highest IFN-γ and IgG2a levels in the group receiving LACK-TSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (p<0.05). In addition, there was a significant reduction in mean lesion size of LACK-TSA and TSA groups than LACK group after challenge (p<0.05). In the present study, DNA immunization promoted Th1 immune response and confirmed the previous observations on immunogenicity of LACK and TSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.
    Matched MeSH terms: Antigens, Protozoan/immunology*
  19. Idris ZM, Chan CW, Kongere J, Hall T, Logedi J, Gitaka J, et al.
    Sci Rep, 2017 08 22;7(1):9123.
    PMID: 28831122 DOI: 10.1038/s41598-017-09585-4
    As markers of exposure anti-malaria antibody responses can help characterise heterogeneity in malaria transmission. In the present study antibody responses to Plasmodium falciparum AMA-1, MSP-119 and CSP were measured with the aim to describe transmission patterns in meso-endemic settings in Lake Victoria. Two cross-sectional surveys were conducted in Lake Victoria in January and August 2012. The study area comprised of three settings: mainland (Ungoye), large island (Mfangano) and small islands (Takawiri, Kibuogi, Ngodhe). Individuals provided a finger-blood sample to assess malaria infection by microscopy and PCR. Antibody response to P. falciparum was determined in 4,112 individuals by ELISA using eluted dried blood from filter paper. The overall seroprevalence was 64.0% for AMA-1, 39.5% for MSP-119, and 12.9% for CSP. Between settings, seroprevalences for merozoite antigens were similar between Ungoye and Mfangano, but higher when compared to the small islands. For AMA-1, the seroconversion rates (SCRs) ranged from 0.121 (Ngodhe) to 0.202 (Ungoye), and were strongly correlated to parasite prevalence. We observed heterogeneity in serological indices across study sites in Lake Victoria. These data suggest that AMA-1 and MSP-119 sero-epidemiological analysis may provide further evidence in assessing variation in malaria exposure and evaluating malaria control efforts in high endemic area.
    Matched MeSH terms: Antigens, Protozoan/immunology
  20. Wong WK, Foo PC, Olivos-Garcia A, Noordin R, Mohamed Z, Othman N, et al.
    Acta Trop, 2017 Aug;172:208-212.
    PMID: 28506795 DOI: 10.1016/j.actatropica.2017.05.017
    Crude soluble antigen (CSA) produced from Entamoeba histolytica trophozoite is conventionally used for serodiagnosis of invasive amoebiasis. However, high background seropositivities by CSA-assay in endemic areas complicate the interpretation of positive result in clinical settings. Instead, incorporating a second assay which indicates active or recent infection into the routine amoebic serology could possibly complement the limitations of CSA-assay. Hence, the present study aimed to evaluate the diagnostic efficacies of indirect ELISAs using CSA and excretory-secretory antigen (ESA) for serodiagnosis of amoebic liver abscess (ALA). Reference standard for diagnosis of ALA at Hospital Universiti Sains Malaysia is based on clinical presentation, radiological imaging and positive indirect haemagglutination assay (titer ≥256). Five groups of human serum samples collected from the hospital included Group I - ALA diagnosed by the reference standard and pus aspirate analysis using real-time PCR (n=10), Group II - ALA diagnosed by the reference standard only (n=41), Group III - healthy control (n=45), Group IV - other diseases control (n=51) and Group V - other infectious diseases control (n=31). For serodiagnosis of ALA serum samples (Group I and II), CSA-ELISA showed sensitivities of 100% for both groups, while ESA-ELISA showed sensitivities of 100% and 88%, respectively. For serodiagnosis of non-ALA serum samples (Group III, IV and V), CSA-ELISA showed specificities of 91%, 75% and 100%, respectively; while ESA-ELISA showed specificities of 96%, 98% and 100%, respectively. Indirect ELISAs using CSA and ESA have shown distinct strength for serodiagnosis of ALA, in terms of sensitivity and specificity, respectively. In conclusion, parallel analysis by both assays improved the overall efficacies of amoebic serology as compared to either single assay.
    Matched MeSH terms: Antigens, Protozoan/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links