Displaying all 9 publications

Abstract:
Sort:
  1. Runnie I, Salleh MN, Mohamed S, Head RJ, Abeywardena MY
    J Ethnopharmacol, 2004 Jun;92(2-3):311-6.
    PMID: 15138017
    In this study, the vasodilatory actions of nine edible tropical plant extracts were investigated. Ipomoea batatas (sweet potato leaf), Piper betle (betel leaf), Anacardium occidentale (cashew leaf), Gynandropsis gynandra (maman leaf), Carica papaya (papaya leaf), and Mentha arvensis (mint leaf) extracts exhibited more than 50% relaxing effect on aortic ring preparations, while Piper betle and Cymbopogon citratus (lemongrass stalk) showed comparable vasorelaxation on isolated perfused mesenteric artery preparation. The vascular effect on the aortic ring preparations were mainly endothelium-dependent, and mediated by nitric oxide (NO) as supported by the inhibition of action in the presence of N(omega)-nitro-L-arginine (NOLA), an nitric oxide synthase (NOS) inhibitor, or by the removal of endothelium. In contrast, vasodilatory actions in resistance vessels (perfused mesenteric vascular beds) appear to involve several biochemical mediators, including NO, prostanoids, and endothelium-dependent hyperpolarizing factors (EDHFs). Total phenolic contents and antioxidant capacities varied among different extracts and found to be independent of vascular relaxation effects. This study demonstrates that many edible plants common in Asian diets to possess potential health benefits, affording protection at the vascular endothelium level.
    Matched MeSH terms: Mesenteric Arteries/drug effects*
  2. Rehman A, Rahman AR, Rasool AH
    J Hum Hypertens, 2002 Apr;16(4):261-6.
    PMID: 11967720
    The objective of this study was to examine the effect of angiotensin II (Ang II) and angiotensin II type 1 (AT(1)) receptor blockade on pulse wave velocity (PWV) in healthy humans. We studied nine young male volunteers in a double-blind randomised crossover design. Carotid-femoral PWV (an index of arterial stiffness) was measured by using a Complior machine. Subjects were previously treated for 3 days with once-daily dose of either a placebo or valsartan 80 mg. On the third day, they were infused with either placebo or 5 ng/kg/min of Ang II over 30 min. Subjects thus received placebo capsule + placebo infusion (P), valsartan + placebo infusion (V), placebo + Ang II infusion (A), and valsartan + Ang II infusion (VA) combinations. Heart rate (HR), blood pressure and PWV were recorded at baseline and then every 10 min during infusion and once after the end of infusion. There were significant increases in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) with A compared with P (P = 0.002, P = 0.002, P = 0.001 respectively). These rises in blood pressure were completely blocked by valsartan. A significant rise in PWV by A was seen compared with P (8.38 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = 0.013) and was completely blocked by valsartan; VA compared with P (7.27 +/- 0.24 vs 7.48 +/- 0.24 m/sec, P = NS). Multiple linear regression analysis showed that blockade of Ang II induced increase in blood pressure by valsartan contributed to only 30% of the total reduction in Ang II induced rise in PWV (R(2) = 0.306). The conclusions were that valsartan completely blocks the effect of Ang II on PWV. The effect of Ang II on PWV is mediated through AT(1)receptors. Reduction in PWV by Ang II antagonist is not fully explained by its pressure lowering effect of Ang II and may be partially independent of its effect on blood pressure.
    Matched MeSH terms: Carotid Arteries/drug effects
  3. Csato V, Kadir SZSA, Khavandi K, Bennett H, Sugden S, Gurney AM, et al.
    Physiol Rep, 2019 Nov;7(22):e14260.
    PMID: 31782255 DOI: 10.14814/phy2.14260
    We investigated the biomechanical relationship between intraluminal pressure within small mesenteric resistance arteries, oxidant activation of PKG, Ca2+ sparks, and BK channel vasoregulation. Mesenteric resistance arteries from wild type (WT) and genetically modified mice with PKG resistance to oxidative activation were studied using wire and pressure myography. Ca2+ sparks and Ca2+ transients within vascular smooth muscle cells of intact arteries were characterized using high-speed confocal microscopy of intact arteries. Arteries were studied under conditions of varying intraluminal pressure and oxidation. Intraluminal pressure specifically, rather than the generic stretch of the artery, was necessary to activate the oxidative pathway. We demonstrated a graded step activation profile for the generation of Ca2+ sparks and also a functional "ceiling" for this pressure --sensitive oxidative pathway. During steady state pressure - induced constriction, any additional Ca2+ sensitive-K+ channel functional availability was independent of oxidant activated PKG. There was an increase in the amplitude, but not the Area under the Curve (AUC) of the caffeine-induced Ca2+ transient in pressurized arteries from mice with oxidant-resistant PKG compared with wild type. Overall, we surmise that intraluminal pressure within resistance arteries controls Ca2+ spark vasoregulation through a tightly controlled pathway with a graded onset switch. The pathway, underpinned by oxidant activation of PKG, cannot be further boosted by additional pressure or oxidation once active. We propose that these restrictive characteristics of pressure-induced Ca2+ spark vasoregulation confer stability for the artery in order to provide a constant flow independent of additional pressure fluctuations or exogenous oxidants.
    Matched MeSH terms: Mesenteric Arteries/drug effects
  4. Mokhtar SS, Vanhoutte PM, Leung SW, Suppian R, Yusof MI, Rasool AH
    Eur J Pharmacol, 2016 Feb 15;773:78-84.
    PMID: 26825543 DOI: 10.1016/j.ejphar.2016.01.013
    Diabetes is associated with endothelial dysfunction, which is characterized by impaired endothelium-dependent relaxations. The present study aimed to examine the role of nitric oxide (NO), prostacyclin and endothelium-dependent hyperpolarization (EDH), in the relaxation of ventral tail arteries of rats under diabetic conditions. Relaxations of tail arteries of control and diabetic rats were studied in wire myograph. Western blotting and immunostaining were used to determine the presence of proteins. Acetylcholine-induced relaxations were significantly smaller in arteries of diabetic compared to control rats (Rmax; 70.81 ± 2.48% versus 85.05 ± 3.15%). Incubation with the combination of non-selective cyclooxygenase (COX) inhibitor, indomethacin and potassium channel blockers, TRAM 34 and UCL 1684, demonstrated that NO-mediated relaxation was attenuated significantly in diabetic compared to control rats (Rmax; 48.47 ± 5.84% versus 68.39 ± 6.34%). EDH-type (in the presence of indomethacin and NO synthase inhibitor, LNAME) and prostacyclin-mediated (in the presence of LNAME plus TRAM 34 and UCL 1684) relaxations were not significantly reduced in arteries of diabetic compared to control rats [Rmax: (EDH; 17.81 ± 6.74% versus 34.16 ± 4.59%) (prostacyclin; 15.85 ± 3.27% versus 17.23 ± 3.75%)]. Endothelium-independent relaxations to sodium nitroprusside, salbutamol and prostacyclin were comparable in the two types of preparations. Western blotting and immunostaining indicated that diabetes diminished the expression of endothelial NO synthase (eNOS), while increasing those of COX-1 and COX-2. Thus, since acetylcholine-induced NO-mediated relaxation was impaired in diabetes because of reduced eNOS protein expression, pharmacological intervention improving NO bioavailability could be useful in the management of diabetic endothelial dysfunction.
    Matched MeSH terms: Arteries/drug effects
  5. Rahman S, Ismail AA, Ismail SB, Naing NN, Abdul Rahman AR
    Eur J Clin Pharmacol, 2007 Aug;63(8):733-41.
    PMID: 17565489 DOI: 10.1007/s00228-007-0315-3
    OBJECTIVE: To investigate whether pharmacological interventions with rosiglitazone/ramipril can reverse preclinical vasculopathy in newly diagnosed untreated patients with type 2 diabetes (T2DM) and impaired glucose tolerance (IGT).

    METHODS: In this randomised, double-blind, placebo-controlled study, 33 T2DM and 33 IGT patients were randomised to 4 mg rosiglitazone or 5 mg ramipril or placebo for 1 year. The subjects were newly diagnosed, untreated, normotensive, nonobese, nonsmoker, and nonhyperlipidaemic. Haemodynamic variables were measured at three treatment phases and pulse wave velocity (PWV) and augmentation index (AI) were measured throughout the treatment period.

    RESULTS: Rosiglitazone showed a significant reduction in PWV (p=0.039) and AI (p=0.031) and ramipril demonstrated a significant reduction of AI (p=0.025) in IGT in comparison to placebo on the 12th month of treatment. No significant difference was observed in PWV and AI in T2DM with rosiglitazone/ramipril in comparison to placebo during overall treatment period.

    CONCLUSIONS: Rosiglitazone significantly reversed preclinical vasculopathy in IGT as evident by significant decrease in PWV and AI after 1 year of treatment. Ramipril also reduced large artery stiffness as shown by significant decrease of AI after 1 year of treatment in IGT. Further trials are needed for a longer period of time, maybe with higher doses, to show whether rosiglitazone/ramipril can reverse preclinical vasculopathy in T2DM.
    Matched MeSH terms: Arteries/drug effects
  6. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

    Matched MeSH terms: Mesenteric Arteries/drug effects
  7. Wee CL, Mokhtar SS, Singh KKB, Yahaya S, Leung SWS, Rasool AHG
    Oxid Med Cell Longev, 2021;2021:3109294.
    PMID: 33623633 DOI: 10.1155/2021/3109294
    Diabetes mellitus contributes to macro- and microvascular complications, leading to adverse cardiovascular events. This study examined the effects of vitamin D deficiency on the vascular function and tissue oxidative status in the microcirculation of diabetic rats and to determine whether these effects can be reversed with calcitriol (active vitamin D metabolite) supplementation. Streptozotocin-induced diabetic rats were fed for 10 weeks with control diet (DC) or vitamin D-deficient diet without (DD) or with oral calcitriol supplementation (0.15 μg/kg) in the last four weeks (DDS) (10 rats each group). A nondiabetic rat group that received control diet was also included (NR). After 10 weeks, rats were sacrificed; mesenteric arterial rings with and without endothelium were studied using wire myograph. Western blotting of the mesenteric arterial tissue was performed to determine the protein expression of endothelial nitric oxide synthase (eNOS) enzyme. Antioxidant enzyme superoxide dismutase (SOD) activity and oxidative stress marker malondialdehyde (MDA) levels in the mesenteric arterial tissue were also measured. The DC group had significantly lower acetylcholine-induced relaxation and augmented endothelium-dependent contraction, with reduced eNOS expression, compared to NR rats. In mesenteric arteries of DD, acetylcholine-induced endothelium-dependent and sodium nitroprusside-induced endothelium-independent relaxations were lower than those in DC. Calcitriol supplementation in DDS restored endothelium-dependent relaxation. Mesenteric artery endothelium-dependent contraction of DD was greater than DC; it was not affected by calcitriol supplementation. The eNOS protein expression and SOD activity were significantly lower while MDA levels were greater in DD compared to DC; these effects were not observed in DDS that received calcitriol supplementation. In conclusion, vitamin D deficiency causes eNOS downregulation and oxidative stress, thereby impairing the vascular function and posing an additional risk for microvascular complications in diabetes. Calcitriol supplementation to diabetics with vitamin D deficiency could potentially be useful in the management of or as an adjunct to diabetes-related cardiovascular complications.
    Matched MeSH terms: Mesenteric Arteries/drug effects
  8. Chin LC, Achike FI, Mustafa MR
    Vascul Pharmacol, 2007 Mar;46(3):223-8.
    PMID: 17126611 DOI: 10.1016/j.vph.2006.10.005
    Hydrogen peroxide (H(2)O(2)) contributes in the regulation of vascular tone, especially in pathological states. The role of H(2)O(2) and superoxide anion free radicals in angiotensin II (Ang II)-induced contraction of diabetic tissues was examined with the aim of elucidating the underlying mechanisms. Isometric tension in response to various drug treatments was measured in isolated superior mesenteric arteries of streptozotocin (STZ)-induced diabetic WKY rats using the Mulvany wire myograph. Compared to the normal (euglycaemic) arteries, the Ang II-induced contraction was significantly reduced in diabetic arteries. Superoxide dismutase (SOD; converts superoxide to H(2)O(2)) significantly reduced the contraction in both types of arteries -- an effect abolished by catalase (H(2)O(2) scavenger), suggesting that the SOD effect was mediated by H(2)O(2). Treatment with catalase had no effect on the Ang II contraction in euglycaemic arteries, but it raised the contraction in diabetic arteries to euglycaemic levels. This increase was similar to that observed with diabetic arteries incubated with L-NAME. Combined catalase and L-NAME treatment further enhanced the contraction in diabetic arteries, suggesting that the catalase effect was not mediated by nitric oxide (NO). The catalase effect was abolished by indomethacin treatment. These results suggest that attenuation of Ang II-induced contraction in diabetic tissues is modulated by endogenous H(2)O(2), the scavenging of which unmasks an indomethacin-sensitive (and therefore cyclooxygenase product-mediated) Ang II-induced contraction.
    Matched MeSH terms: Mesenteric Arteries/drug effects*
  9. Razak AA, Leach L, Ralevic V
    Diab Vasc Dis Res, 2018 11;15(6):528-540.
    PMID: 30130976 DOI: 10.1177/1479164118790904
    BACKGROUND: There is clinical and experimental evidence for altered adenosine signalling in the fetoplacental circulation in pregnancies complicated by diabetes, leading to adenosine accumulation in the placenta. However, the consequence for fetoplacental vasocontractility is unclear. This study examined contractility to adenosine of chorionic vessels from type 1 diabetes mellitus, gestational diabetes mellitus and normal pregnancies.

    METHODS: Chorionic arteries and veins were isolated from human placenta from normal, gestational diabetes mellitus and type 1 diabetes mellitus pregnancies. Isometric tension recording measured responses to adenosine and the thromboxane A2 analogue U46619 (thromboxane A2 mediates fetoplacental vasoconstriction to adenosine). Adenosine and thromboxane prostanoid receptor protein expression was determined by immunoblotting.

    RESULTS: Adenosine elicited contractions in chorionic arteries and veins which were impaired in both gestational diabetes mellitus and type 1 diabetes mellitus. Contractions to potassium chloride were unchanged. Adenosine A2A and A2B receptor protein levels were not different in gestational diabetes mellitus and normal pregnancies. Contractions to U46619 were unaltered in gestational diabetes mellitus arteries and increased in type 1 diabetes mellitus arteries. Overnight storage of vessels restored contractility to adenosine in gestational diabetes mellitus arteries and normalized contraction to U46619 in type 1 diabetes mellitus arteries.

    CONCLUSION: These data are consistent with the concept of aberrant adenosine signalling in diabetes; they show for the first time that this involves impaired adenosine contractility of the fetoplacental vasculature.

    Matched MeSH terms: Arteries/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links