Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Ariff N, Abdullah A, Azmai MNA, Musa N, Zainathan SC
    Vet World, 2019 Aug;12(8):1273-1284.
    PMID: 31641308 DOI: 10.14202/vetworld.2019.1273-1284
    Background and Aim: Viral nervous necrosis (VNN) is a serious disease of several marine fish species. VNN causes 100% mortality in the larval stages, while lower losses have been reported in juvenile and adult fish. This study aimed to detect the occurrence of VNN while identifying its associated risk factors and the genotypes of its causative agent in a hybrid grouper hatchery in Malaysia.

    Materials and Methods: A batch of newly hatched hybrid grouper fry (Epinephelus fuscoguttatus × Epinephelus lanceolatus) were followed from the larval stage to market size. Samples of the hybrid groupers, water, live feed, and artificial fish pellets were collected periodically from day 0 to 180 in the hybrid grouper hatchery. Reverse transcription-polymerase chain reaction (RT-PCR) and nested PCR amplifications were carried out on VNN-related sequences. The phylogenetic tree including the sampled causative agent of VNN was inferred from the coat protein genes from all known Betanodavirus species using Molecular Evolutionary Genetics Analysis (MEGA). Pearson's correlation coefficient values were calculated to determine the strength of the correlation between the presence of VNN in hybrid grouper samples and its associated risk factors.

    Results: A total of 113 out of 146 pooled and individual samples, including hybrid grouper, water, and artificial fish pellet samples, demonstrated positive results in tests for the presence of VNN-associated viruses. The clinical signs of infection observed in the samples included darkened skin, deformation of the backbone, abdominal distension, skin lesions, and fin erosion. VNN was present throughout the life stages of the hybrid groupers, with the first detection occurring at day 10. VNN-associated risk factors included water temperature, dissolved oxygen content, salinity, ammonia level, fish size (adults more at risk than younger stages), and life stage (age). Detection of VNN-associated viruses in water samples demonstrated evidence of horizontal transmission of the disease. All the nucleotide sequences found in this study had high nucleotide identities of 88% to 100% to each other, striped jack nervous necrosis virus (SJNNV), and the reassortant strain red-spotted grouper NNV/SJNNV (RGNNV/SJNNV) isolate 430.2004 (GenBank accession number JN189932.1) (n=26). The phylogenetic analysis showed that quasispecies was present in each VNN-causing virus-positive sample, which differed based on the type of sample and life stage.

    Conclusion: This study was the first to confirm the existence of a reassortant strain (RGNNV/SJNNV) in hybrid groupers from Malaysia and Southeast Asia. However, the association between the mode of transmission and the risk factors of this virus needs to be investigated further to understand the evolution and potential new host species of the reassortant strain.

    Matched MeSH terms: Bass
  2. Tahir D, Shariff M, Syukri F, Yusoff FM
    Vet World, 2018 Mar;11(3):327-331.
    PMID: 29657425 DOI: 10.14202/vetworld.2018.327-331
    Background and Aim: Brown-marbled grouper Epinephelus fuscoguttatus is a premium marine food fish with high demand in Asia. In fish, stress due to environmental changes such as fluctuations in the salinity can result in increased cortisol level. Stress in fish increases susceptibility to diseases ultimately resulting in death. Therefore, the aim of this study was to investigate the salinity tolerance of E. fuscoguttatus and their survival in lower salinities.

    Materials and Methods: In this study, grouper juveniles (92.43±standard error of the mean 0.51 mm) maintained in 31 ppt seawater were transferred into five tanks with seawater diluted to 25, 20, 15, 10, and 5 ppt. The salinity of the control group was not changed and was maintained at 31 ppt. Serum cortisol was measured using ELISA at 0, 30, 60, and 120 min after the fish were transferred to the different concentrations of salinity.

    Results: The survival percentage was recorded for 14 days following the transfer and the results revealed that serum cortisol of fish in a high change in salinity (15, 10, and 5 ppt) was significantly higher than the control group immediately after exposure. At the high salinity change, the cortisol levels gradually decrease at 30 min and 60 min, until no difference in cortisol concentration was observed at 120 min. No mortality was observed in fish exposed to low salinity change (25 and 20 ppt) while in higher salinity change (5 ppt), the survival percentage was 50%.

    Conclusion: The study revealed that the serum cortisol concentration was high initially and continues to decrease to resting cortisol level at 120 min indicating that cortisol hormone is released following acute stress as a primary response in grouper juveniles.

    Matched MeSH terms: Bass
  3. Zhu ZY, Wang CM, Lo LC, Lin G, Feng F, Tan J, et al.
    Anim. Genet., 2010 Apr;41(2):208-12.
    PMID: 19793264 DOI: 10.1111/j.1365-2052.2009.01973.x
    Microsatellites are the most popular markers for parentage assignment and population genetic studies. To meet the demand for international comparability for genetic studies of Asian seabass, a standard panel of 28 microsatellites has been selected and characterized using the DNA of 24 individuals from Thailand, Malaysia, Indonesia and Australia. The average allele number of these markers was 10.82 +/- 0.71 (range: 6-19), and the expected heterozygosity averaged 0.76 +/- 0.02 (range: 0.63-1.00). All microsatellites showed Mendelian inheritance. In addition, eight standard size controls have been developed by cloning a set of microsatellite alleles into a pGEM-T vector to calibrate allele sizes determined by different laboratories, and are available upon request. Seven multiplex PCRs, each amplifying 3-5 markers, were optimized to accurately and rapidly genotype microsatellites. Parentage assignment using 10 microsatellites in two crosses (10 x 10 and 20 x 20) demonstrated a high power of these markers for revealing parent-sibling connections. This standard set of microsatellites will standardize genetic diversity studies of Asian seabass, and the multiplex PCR sets will facilitate parentage assignment.
    Matched MeSH terms: Bass/genetics*
  4. Qiu S, Chen B, Du J, Loh KH, Liao J, Liu X, et al.
    Biodivers Data J, 2021;9:e63945.
    PMID: 33732033 DOI: 10.3897/BDJ.9.e63945
    Background: The Xisha Islands are composed of the Yongle Islands and the Xuande Islands in Hainan Province, China. It has one of the highest species diversity in the world and is also a typical oceanic distribution area of coral reefs globally. The ichthyofauna of the Xisha Islands were recorded by underwater visual census in May 2019 and July 2020. The survey data were combined with previous records of species into the checklist of the Xisha Islands presented herein. A total of 691 species, belonging to 24 orders and 97 families, was recorded. The major families were Labridae, Pomacentridae, Serranidae, Chaetodontidae, Hexanchidae, Lutjanidae, Scaridae, Gobiidae, Scorpaenidae and Carangidae. In this study, the Coral Fish iversity Index (CFDI) of six families (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) was 229, indicating 756 coral fishes. In terms of the IUCN Red List, one species is Critically Endangered (Glyphis gangeticus), six species are Endangered (Stegostoma fasciatum, Aetomylaeus maculatus, Aetomylaeus vespertilio, Epinephelus akaara, Cheilinusundulatus sp. and Xiphias gladius), 16 species are Vulnerable, and 13 species are Near Threatened in the Xisha Archipelago, so conservation should be strengthened in this area in the future.

    New information: One species is a new record for China (Dischistodus pseudochrysopoecilus) and 23 species are newly found in the Xisha Islands.

    Matched MeSH terms: Bass
  5. Yaacob EN, Goethals J, Bajek A, Dierckens K, Bossier P, De Geest BG, et al.
    Mar Biotechnol (NY), 2017 Aug;19(4):391-400.
    PMID: 28643227 DOI: 10.1007/s10126-017-9758-4
    Aquaculture is the fastest growing animal production sector. However, the production of marine fish is still hampered by the high mortality rate in the first few weeks after hatching. Mortality in larvae is often caused by microbial infections. Today, the incorporation of immunostimulants into microparticles provides us new tools to enhance disease resistance in marine larviculture. In this study, we prepared alginate microparticles loaded with the model antigen fluorescein isothiocyanate conjugated-bovine serum albumin. Optimum concentrations of alginate and CaCl2, the correct alginate viscosity and the appropriate preparatory conditions led to the creation of desirable microparticles with the correct size for oral feeding in gnotobiotic European sea bass larvae. The prepared alginate microparticles were stable in sea water and were successfully ingested by gnotobiotic sea bass larvae at day after hatching 7 without causing any negative effects. Results suggest the suitability of this drug delivery system for targeting the innate immune system of fish larvae in order to enhance disease resistance and thus reduce mortality in larviculture.
    Matched MeSH terms: Bass
  6. Yaacob EN, De Geest BG, Goethals J, Bajek A, Dierckens K, Bossier P, et al.
    Vet Immunol Immunopathol, 2018 Oct;204:19-27.
    PMID: 30596377 DOI: 10.1016/j.vetimm.2018.09.001
    Vibrio anguillarum causes high mortality in European sea bass (Dicentrarchus labrax) larviculture. In this study, we evaluated if the recombinant sea bass ferritin-H could stimulate the innate immune system of gnotobiotic European sea bass larvae resulting in protection against a V. anguillarum challenge. We also evaluated the effect of a V. anguillarum infection on the transcription of immune-related genes in gnotobiotic European sea bass larvae. Recombinant sea bass ferritin-H was produced, encapsulated in calcium alginate microparticles and orally delivered to sea bass larvae at seven days after hatching. Our results showed V. anguillarum caused an acute infection, resulting in high mortality. The infection significantly upregulated the expression of tlr3, tlr5, cas1, il1β, tnfα, mif, il10, cc1, cxcl8 at 18, 24 and 36 h post infection, but not of the chemokine receptor genes cxcr4 and ccr9. There was no protective effect of ferritin-H. Remarkably, ferritin-H caused significantly higher transcript levels for cxcr4 and ccr9. Sea bass ferritin-H was more likely involved in immune-suppression and results point in the direction of a negative regulation of CXCR4 resulting in inhibition of cell proliferation, differentiation and migration which is detrimental to innate immunity and might explain the non-protective effect of ferritin-H in fish larvae.
    Matched MeSH terms: Bass/immunology; Bass/microbiology*
  7. Hamid R, Ahmad A, Usup G
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17269-76.
    PMID: 27221587 DOI: 10.1007/s11356-016-6655-8
    A study was carried out to determine the pathogenicity (hemolytic activity) on corals (Turbinaria sp.) and sea bass (Lates calcarifer) of Aeromonas hydrophila from water, sediment, and coral. Samples were collected from coastal water and coral reef areas. One hundred and sixty-two isolates were successfully isolated. Out of 162, 95 were from seawater, 49 from sediment, and 18 from coral. Sixteen isolates were picked and identified. Isolates were identified using a conventional biochemical test, the API 20NE kit, and 16S rRNA nucleotide sequences. Hemolytic activity was determined. Out of 16 isolates, 14 isolates were β-hemolytic and two isolates were non-hemolytic. Corals infected with A. hydrophila suffered bleaching. Similar effect was observed for both hemolytic and non-hemolytic isolates. Intramuscular injection of A. hydrophila into sea bass resulted in muscular bleeding and death. Higher infection rates were obtained from hemolytic compared to non-hemolytic strains of A. hydrophila isolates.
    Matched MeSH terms: Bass/microbiology*
  8. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
    Matched MeSH terms: Bass/metabolism*
  9. Alongi DM, Chong VC, Dixon P, Sasekumar A, Tirendi F
    Mar Environ Res, 2003 May;55(4):313-33.
    PMID: 12517423
    The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities.
    Matched MeSH terms: Bass*
  10. Shamsudin L, Shazili NA
    Environ Monit Assess, 1991 Oct;19(1-3):287-94.
    PMID: 24233946 DOI: 10.1007/BF00401318
    Increased primary plankton productivity was observed in a brackish water lagoon of Terengganu during the study period between January 1988 to December 1988. The lagoon is also the site for the fish cage culture activities of sea bass during the study period. An examination of water quality at the sampling stations during the study period indicated that both the organic and inorganic nutrients were high during the pre-monsoon period. The source of the nutrient in the lagoon was believed to be derived from the agro-based industrial effluents, fertilisers from paddy fields as well as untreated human and animal wastes. This coincided with the peak production of plankton in the surface waters of the brackish water lagoon. During this period both cultured and indigenous fish species were seen to suffer from oxygen asphyxiation (suffocation due to lack of oxygen). The primary productivity values ranged from 9 to 22 μg/L/h during the peak period while the microplankton species were composed of diatom, flagellates and dinoflagellates. Reduction in the primary productivity values were obtained with reduction in sallinity, specially during the peak monsoon months (November to March) corresponding to the Northeast monsoon period.
    Matched MeSH terms: Bass
  11. Aisyhah MA, Amal MN, Zamri-Saad M, Siti-Zahrah A, Shaqinah NN
    J Fish Dis, 2015 Dec;38(12):1093-8.
    PMID: 25704397 DOI: 10.1111/jfd.12351
    Matched MeSH terms: Bass/microbiology
  12. Tan, Chin Yong, Galaz, German Bueno, Shapawi, Rossita
    MyJurnal
    This study was conducted to investigate the effects of dietary inclusion of Spirulina platensis on growth performance and hematological parameters of juvenile Asian sea bass (Lates calcarifer) reared in a freshwater culture system. Five experimental diets were prepared by replacing fish meal protein with the microalga at replacement levels of 5% (SP5), 10% (SP10), 20% (SP20) and 30% (SP30), and the substitution effect was compared with a control diet (Con) in which fish meal was the sole protein. Fish were stocked in net cages placed in a 150-ton tank with a stocking density of 20 fish per cage. After 8 weeks of feeding trial, the fish did not show any significant differences in growth performance but numerically higher weight gain and specific growth rate were achieved in the fish stock fed diet SP10 compared to other treatments. Feed conversion ratio and survival rate of fish were significantly affected by the inclusion of Spirulina in the diets. Except for crude ash content, whole-body proximate composition of the experimental fish was also significantly influenced by the diets. Regarding the effects of diets on blood parameters, only hematocrit, hemaglobin, HDL-c and AST were significantly affected by the inclusion of Spirulina in the diets. This study demonstrated that Spirulina could replace up to 10% of FM protein in practical diets of juvenile Asian sea bass without negative effects on growth performance. However, replacement of fish meal with Spirulina meal at 5% might be considered for commercial use considering a significant decrease in survival above this value.
    Matched MeSH terms: Bass
  13. Herbert BW, Shaharom FM
    Parasitol Res, 1995;81(4):349-54.
    PMID: 7624295
    A new sanguinicolid blood fluke, Parasanguinicola vastispina, is described from sea bass Lates calcarifer cultured in Malaysia. It is distinguished by its massive armature and widely spaced genital pores, the female pore being pre-ovarian. P. vastispina inhabits the branchial arteries, dorsal aorta, mesenteric venules and renal artery of its host. No pathological effect was observed in infected fish.
    Matched MeSH terms: Bass/parasitology*
  14. Silvaraj S, Md Yasin IS, A Karim MM, Saad MZ
    Vaccines (Basel), 2020 Nov 06;8(4).
    PMID: 33171991 DOI: 10.3390/vaccines8040660
    Recombinant cell vaccines expressing the OmpK and DnaJ of Vibrio were developed and subsequently, a vaccination efficacy trial was carried out on juvenile seabass (~5 cm; ~20 g). The fish were divided into 5 groups of 50 fish per group, kept in triplicate. Groups 1 and 2 were injected with 107 CFU/mL of the inactivated recombinant cells vaccines, the pET-32/LIC-OmpK and pET-32/LIC-DnaJ, respectively. Group 3 was similarly injected with 107 CFU/mL of inactivated E. coli BL21 (DE3), Group 4 with 107 CFU/mL of formalin killed whole cells V. harveyi, and Group 5 with PBS solution. Serum, mucus, and gut lavage were used to determine the antibody levels before all fish were challenged with V. harveyi, V. alginolyticus, and V. parahemolyticus, respectively on day 15 post-vaccination. There was significant increase in the serum and gut lavage antibody titers in the juvenile seabass vaccinated with r-OmpK vaccine. In addition, there was an up-regulation for TLR2, MyD88, and MHCI genes in the kidney and intestinal tissues of r-OmpK vaccinated fish. At the same time, r-OmpK triggered higher expression level of interleukin IL-10, IL-8, IL-1ß in the spleen, intestine, and kidney compared to r-DnaJ. Overall, r-OmpK and r-DnaJ triggered protection by curbing inflammation and strengthening the adaptive immune response. Vaccinated fish also demonstrated strong cross protection against heterologous of Vibrio isolates, the V. harveyi, V. alginolyticus, and V. parahaemolyticus. The fish vaccinated with r-OmpK protein were completely protected with a relative per cent of survival (RPS) of 90 percent against V. harveyi and 100 percent against V. alginolyticus and V. parahaemolyticus. A semi-quantitative PCR detection of Vibrio spp. from the seawater containing the seabass also revealed that vaccination resulted in reduction of pathogen shedding. In conclusion, our results suggest r-OmpK as a candidate vaccine molecule against multiple Vibrio strain to prevent vibriosis in marine fish.
    Matched MeSH terms: Bass
  15. Feng S, S. Xia ZS, Zhang Z, Rahman M, Rajkumar M
    Sains Malaysiana, 2015;44:537-543.
    The effects of dietary protein level on the growth performance and ammonia excretion of the leopard coral grouper,
    Plectropomus leopardus were investigated for eight weeks. Fish were fed diets with 40, 45, 50, 55 and 60% crude protein
    levels in separate recirculating systems. Fish fed with the 50% crude protein containing diet showed the best ingestion
    rate, which was significantly higher than that found in the other groups. As the dietary protein level increased, the
    specific growth rate increased significantly and it reached the highest level at 50% crude protein containing diet. Based
    on the results of all measured parameters 50% protein containing diet was the best among all test diets. The regression
    equation for dietary protein level versus ammonia excretion indicated that the optimal dietary protein level with the
    least ammonia excretion was 53.14%. More research is still needed to elucidate the effects of 53.14% crude protein
    containing diet on the specific growth rate, feed conversion ratio, protein efficiency ratio and ingestion rate of leopard
    coral grouper before recommending this level. Until then, 50% protein containing diet can be recommended for leopard
    coral grouper culture in the recirculation system.
    Matched MeSH terms: Bass
  16. Abdul Rahman Z, Choay-Hoong L, Mat Khairuddin R, Ab Razak S, Othman AS
    J Genet, 2012 Aug;91(2):e82-5.
    PMID: 22932425
    Matched MeSH terms: Bass/genetics*
  17. Tengku Nur Alia TKA, Hing LS, Sim SF, Pradit S, Ahmad A, Ong MC
    Mar Pollut Bull, 2020 Apr;153:111009.
    PMID: 32275555 DOI: 10.1016/j.marpolbul.2020.111009
    Metallic contamination in seafood, especially fish, has been of increasing concern to human health. Moreover, with increasing dependency on farmed fish for fish resources, the metallic contamination in them is still questionable. This study aimed to investigate the effects of cooking (steaming) on heavy metal concentration in farmed fish and to estimate its potential human health risk. Farmed sea basses (Lates calcarifer) from Setiu Lagoon were used to study the difference in metal uptake through human consumption of raw and cooked (steamed) fish samples. Selected heavy metals, namely copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb), were measured using ICP-MS following Teflon bomb closed digestion of the fish samples. Cooking of the fish muscle by steaming was applied to investigate if cooking changes the concentration of heavy metals. Mercury and As were found accumulated more notably in the fish muscle, though only Hg was found to show significant (p > 0.05) increase when L. calcarifer is cooked. The amount of As in the fish muscle throughout its growth can be potentially harmful to humans, with the highest averaged concentration at 3.29 ± 0.65 mg/kg dw. above the standard set by the Malaysian Food Regulation (1985) of >1 mg/kg. All the other heavy metals were at relatively safe concentrations well below the standard set by both national and international guidelines. The PTWI per individual of L. calcarifer for As was at 0.84 mg/kg bw., which indicated that the amount of this fish safe for consumption without any adverse effect is 170 g/week. Therefore, long-term intake of these fish may pose a risk to human health due to the relatively higher Hg and As concentration found in these fishes.
    Matched MeSH terms: Bass
  18. Senapin S, Dong HT, Meemetta W, Gangnonngiw W, Sangsuriya P, Vanichviriyakit R, et al.
    J Fish Dis, 2019 Jan;42(1):119-127.
    PMID: 30397913 DOI: 10.1111/jfd.12915
    In Southeast Asia, a new disease called scale drop disease (SDD) caused by a novel Megalocytivirus (SDDV) has emerged in farmed Asian sea bass (Lates calcarifer) in Singapore, Malaysia and Indonesia. We received samples from an Eastern Thai province that also showed gross signs of SDD (loss of scales). Clinical samples of 0.2-1.1 kg L. calcarifer collected between 2016 and 2018 were examined for evidence of SDDV infection. Histopathology was similar to that in the first report of SDDV from Singapore including necrosis, inflammation and nuclear pyknosis and karyorrhexis in the multiple organs. Intracytoplasmic inclusion bodies were also observed in the muscle tissue. In a density-gradient fraction from muscle extracts, TEM revealed enveloped, hexagonal megalocytiviral-like particles (~100-180 nm). By PCR using primers derived from the Singaporean SDDV genome sequence, four different genes were amplified and sequenced from the Thai isolate revealing 98.7%-99.9% identity between the two isolates. Since viral inclusions were rarely observed, clinical signs and histopathology could not be used to easily distinguish between SDD caused by bacteria or SDDV. We therefore recommend that PCR screening be used to monitor broodstock, fry and grow-out fish to estimate the current impact of SDDV in Southeast Asia and to prevent its spread.
    Matched MeSH terms: Bass/virology
  19. Kua BC, Noraziah MR, Nik Rahimah AR
    Trop Biomed, 2012 Sep;29(3):443-50.
    PMID: 23018508 MyJurnal
    Twenty Asian sea bass Lates calcarifer from a floating cage in Bt. Tambun, Penang were examined for the presence of parasitic gill copepod, Lernanthropus latis. The prevalence of L. latis was 100% with the intensity of infection ranging from 1 to 18 parasites per host or 3.75 of mean intensity. Female parasites having oblong cephalothorax and egg-strings were seen mainly on the entire gill of examined Asian sea bass. The infected gill of Asian sea bass was pale and had eccessive mucus production. Under light and scanning electron microscopies (SEM), L. latis was seen grasping or holding tightly to the gill filament using their antenna, maxilla and maxilliped. These structures are characteristically prehensile and uncinate for the parasite to attach onto the host tissue. The damage was clearly seen under SEM as the hooked end of the antenna was embedded into the gill filament. The parasite also has the mandible which is styliform with eight teeth on the inner margin. The pathological effects such as erosion, haemorrhages, hyperplasia and necrosis along the secondary lamellae of gill filaments were seen and more severe at the attachment site. The combined actions of the antenna, maxilla and maxilliped together with the mandible resulted in extensive damage as L. latis attached and fed on the host tissues.
    Matched MeSH terms: Bass/parasitology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links