Displaying publications 1 - 20 of 160 in total

Abstract:
Sort:
  1. Perumal R, Bhattathiry EP
    Med J Malaya, 1970 Mar;24(3):208-11.
    PMID: 4246803
    Matched MeSH terms: Brain/metabolism
  2. Malini M, Kwan TK, Perumal R
    Biochem. Mol. Biol. Int., 1994 Feb;32(2):279-90.
    PMID: 8019433
    In vivo studies involved monitoring the effect of morphine administration on catecholamine biosynthesis by the brain while in vitro studies involved studying the effect of morphine on the uptake of tritiated tyrosine by synaptosomes and its subsequent incorporation into the catecholamines. The extremely low levels of these endogenous compounds required the use of High Performance Liquid Chromatography with electrochemical detection. Intra-peritoneal injection of morphine at a dosage of 10 mg/kg did not produce appreciable changes in the catecholamine levels but a dosage of 30 mg/kg morphine was found to elevate dihydroxy phenylacetic acid content. At a dosage of 60 mg/kg, dopamine levels were elevated while noradrenaline was depleted. Morphine, at a concentration of 1 x 10(-5)M increases the incorporation of tritiated tyrosine into dopamine and dihydroxy phenylacetic acid in synaptosomal preparations.
    Matched MeSH terms: Brain/metabolism*
  3. Usup G, Leaw CP, Cheah MY, Ahmad A, Ng BK
    Toxicon, 2004 Jul;44(1):37-43.
    PMID: 15225560
    This study was carried out to characterize the detection and quantitation of several paralytic shellfish poisoning (PSP) toxin congeners using a receptor binding assay (RBA). This involved competitive binding of the toxin congeners against tritium-labeled STX for receptor sites on rat brain sodium channels. Competitive binding curves were described by a four-parameter logistic equation. Half-saturation values (EC(50)) ranged from 4.38 nM for STX to 142 nM for GTX5. Receptor binding affinity was in the order STX>GTX1/4>neoSTX>GTX2/3>dcSTX>GTX5, and this was similar to the order of mouse toxicity of these congeners. Predicted toxin concentrations from observed STXeq values and EC(50) ratios relative to STX were within 20% or better of the actual concentrations used in the assay. In contrast predicted toxin concentrations using mouse toxicity ratios relative to STX did not provide a good match to actual concentrations, except for GTX1/4. This study has shown that the rat brain sodium channel RBA will provide a reliable integration of total toxicity of various PSP toxin congeners present in a sample.
    Matched MeSH terms: Brain/metabolism*
  4. Ip YK, Lim CK, Lee SL, Wong WP, Chew SF
    J Exp Biol, 2004 Aug;207(Pt 17):3015-23.
    PMID: 15277556
    The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the giant mudskipper, Periophthalmodon schlosseri, with special emphasis on the role of urea synthesis in ammonia detoxification. The ammonia and urea excretion rates of P. schlosseri increased 1.70- and 1.92-fold, respectively, within the first 3 h after feeding on guppies. Simultaneously, there were significant decreases in ammonia levels in the plasma and the brain, and in urea contents in the muscle and liver, of P. schlosseri at 3 h post-feeding. Thus, it can be concluded that P. schlosseri was capable of unloading ammonia originally present in some of its tissues in anticipation of ammonia released from the catabolism of excess amino acids after feeding. Subsequently, there were significant increases in urea content in the muscle, liver and plasma (1.39-, 2.17- and 1.62-fold, respectively) at 6 h post-feeding, and the rate of urea synthesis apparently increased 5.8-fold between 3 h and 6 h. Increased urea synthesis might have occurred in the liver of P. schlosseri because the greatest increase in urea content was observed therein. The excess urea accumulated in the body at 6 h was completely excreted between 6 and 12 h, and the percentage of waste-N excreted as urea-N increased significantly to 26% during this period, but never exceeded 50%, the criterion for ureotely, meaning that P. schlosseri remained ammonotelic after feeding. By 24 h, 62.7% of the N ingested by P. schlosseri was excreted, out of which 22.6% was excreted as urea-N. This is the first report on the involvement of increased urea synthesis and excretion in defense against ammonia toxicity in the giant mudskipper, and our results suggest that an ample supply of energy resources, e.g. after feeding, is a prerequisite for the induction of urea synthesis. Together, increases in nitrogenous excretion and urea synthesis after feeding effectively prevented a postprandial surge of ammonia in the plasma of P. schlosseri as reported previously for other fish species. Consequently, contrary to previous reports, there were significant decreases in the ammonia content of the brain of P. schlosseri throughout the 24 h period post-feeding, accompanied by a significant decrease in brain glutamine content between 12 h and 24 h.
    Matched MeSH terms: Brain/metabolism
  5. Ip YK, Leong MW, Sim MY, Goh GS, Wong WP, Chew SF
    J Exp Biol, 2005 May;208(Pt 10):1993-2004.
    PMID: 15879078
    The objective of this study was to elucidate if chronic and acute ammonia intoxication in mudskippers, Periophthalmodon schlosseri and Boleophthalmus boddaerti, were associated with high levels of ammonia and/or glutamine in their brains, and if acute ammonia intoxication could be prevented by the administration of methionine sulfoximine [MSO; an inhibitor of glutamine synthetase (GS)] or MK801 [an antagonist of N-methyl D-aspartate type glutamate (NMDA) receptors]. For P. schlosseri and B. boddaerti exposed to sublethal concentrations (100 and 8 mmol l(-1) NH4Cl, respectively, at pH 7.0) of environmental ammonia for 4 days, brain ammonia contents increased drastically during the first 24 h, and they reached 18 and 14.5 micromol g(-1), respectively, at hour 96. Simultaneously, there were increases in brain glutamine contents, but brain glutamate contents were unchanged. Because glutamine accumulated to exceptionally high levels in brains of P. schlosseri (29.8 micromol g(-1)) and B. boddaerti (12.1 micromol g(-1)) without causing death, it can be concluded that these two mudskippers could ameliorate those problems associated with glutamine synthesis and accumulation as observed in patients suffering from hyperammonemia. P. schlosseri and B. boddaerti could tolerate high doses of ammonium acetate (CH3COONH4) injected into their peritoneal cavities, with 24 h LC50 of 15.6 and 12.3 micromol g(-1) fish, respectively. After the injection with a sublethal dose of CH3COONH4 (8 micromol g(-1) fish), there were significant increases in ammonia (5.11 and 8.36 micromol g(-1), respectively) and glutamine (4.22 and 3.54 micromol g(-1), respectively) levels in their brains at hour 0.5, but these levels returned to normal at hour 24. By contrast, for P. schlosseri and B. boddaerti that succumbed within 15-50 min to a dose of CH3COONH4 (15 and 12 micromol g(-1) fish, respectively) close to the LC50 values, the ammonia contents in the brains reached much higher levels (12.8 and 14.9 micromol g(-1), respectively), while the glutamine level remained relatively low (3.93 and 2.67 micromol g(-1), respectively). Thus, glutamine synthesis and accumulation in the brain was not the major cause of death in these two mudskippers confronted with acute ammonia toxicity. Indeed, MSO, at a dosage (100 microg g(-1) fish) protective for rats, did not protect B. boddaerti against acute ammonia toxicity, although it was an inhibitor of GS activities from the brains of both mudskippers. In the case of P. schlosseri, MSO only prolonged the time to death but did not reduce the mortality rate (100%). In addition, MK801 (2 microg g(-1) fish) had no protective effect on P. schlosseri and B. boddaerti injected with a lethal dose of CH3COONH4, indicating that activation of NMDA receptors was not the major cause of death during acute ammonia intoxication. Thus, it can be concluded that there are major differences in mechanisms of chronic and acute ammonia toxicity between brains of these two mudskippers and mammalian brains.
    Matched MeSH terms: Brain/metabolism*
  6. Mazlan M, Sue Mian T, Mat Top G, Zurinah Wan Ngah W
    J Neurol Sci, 2006 Apr 15;243(1-2):5-12.
    PMID: 16442562
    Oxidative stress is thought to be one of the factors that cause neurodegeneration and that this can be inhibited by antioxidants. Since astrocytes support the survival of central nervous system (CNS) neurons, we compared the effect of alpha-tocopherol and gamma-tocotrienol in minimizing the cytotoxic damage induced by H(2)O(2), a pro-oxidant. Primary astrocyte cultures were pretreated with either alpha-tocopherol or gamma-tocotrienol for 1 h before incubation with 100 microM H(2)O(2) for 24 h. Cell viability was then assessed using the MTS assay while apoptosis was determined using a commercial ELISA kit as well as by fluorescent staining of live and apoptotic cells. The uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes were also determined using HPLC. Results showed that gamma-tocotrienol is toxic at concentrations >200 microM but protects against H(2)O(2) induced cell loss and apoptosis in a dose dependent manner up to 100 microM. alpha-Tocopherol was not cytotoxic in the concentration range tested (up to 750 microM), reduced apoptosis to the same degree as that of gamma-tocotrienol but was less effective in maintaining the viable cell number. Since the uptake of alpha-tocopherol and gamma-tocotrienol by astrocytes is similar, this may reflect the roles of these 2 vitamin E subfamilies in inhibiting apoptosis and stimulating proliferation in astrocytes.
    Matched MeSH terms: Brain/metabolism
  7. Lim WK
    Recent Pat CNS Drug Discov, 2007 Jun;2(2):107-12.
    PMID: 18221221
    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in humans. They convey extracellular signals into the cell interior by activating intracellular processes such as heterotrimeric G protein-dependent signaling pathways. They are widely distributed in the nervous system, and mediate key physiological processes including cognition, mood, appetite, pain and synaptic transmission. With at least 30% of marketed drugs being GPCR modulators, they are a major therapeutic target in the pharmaceutical industry's drug discovery programs. This review will survey recently patented ligands for GPCRs implicated in CNS disorders, in particular the metabotropic glutamate, adenosine and cannabinoid receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the major excitatory brain neurotransmitter, while adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. Recent patents for ligands of these receptors include mGluR5 antagonists and adenosine A(1) receptor agonists. Cannabinoid receptors remain one of the most important GPCR drug discovery target due to the intense interest in CB(1) receptor antagonists for treating obesity and metabolic syndrome. Such small molecule ligands are the outcome of the continuing focus of many pharmaceutical companies to identify novel GPCR agonist, antagonist or allosteric modulators useful for CNS disorders, for which more effective drugs are eagerly awaited.
    Matched MeSH terms: Brain/metabolism*
  8. Swamy M, Sirajudeen KN, Chandran G
    Drug Chem Toxicol, 2009;32(4):326-31.
    PMID: 19793024 DOI: 10.1080/01480540903130641
    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity.
    Matched MeSH terms: Brain/metabolism
  9. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al.
    PLoS One, 2009;4(11):e7689.
    PMID: 19888324 DOI: 10.1371/journal.pone.0007689
    The methods currently available for diagnosis and prognosis of cerebral ischaemia still require further improvements. Micro-RNAs (small non-coding RNAs) have been recently reported as useful biomarkers in diseases such as cancer and diabetes. We therefore carried out microRNA (miRNA) profiling from peripheral blood to detect and identify characteristic patterns in ischaemic stroke.
    Matched MeSH terms: Brain/metabolism
  10. Moo KS, Radhakrishnan S, Teoh M, Narayanan P, Bukhari NI, Segarra I
    Yao Xue Xue Bao, 2010 Jul;45(7):901-8.
    PMID: 20931790
    Imatinib is an efficacious anticancer drug with a spectrum of potential antitumour applications limited by poor biodistribution at therapeutic concentrations to the tissues of interest. We assess the pharmacokinetic and tissue distribution profile of imatinib in a liposome formulation. Its single dose (6.25 mg x kg(-1)) in a liposome formulation was administered iv to male mice. Imatinib concentration was measured in plasma, spleen, liver, kidney and brain using a HPLC assay. Non-compartmental pharmacokinetic approach was used to assess the disposition parameters. The plasma disposition profile was biphasic with a plateau-like second phase. The AUC(0-->infinity) was 11.24 microg x h x mL(-1), the elimination rate constant (k(el)) was 0.348 h(-1) and the elimination half life (t(1/2)) was 2.0 h. The mean residence time (MRT) was 2.59 h, V(SS) was 1.44 L x kg(-1) and clearance was 0.56 L x h x kg(-1). Liver achieved the highest tissue exposure: CMAX = 18.72 microg x mL(-1); AUC(0-->infinity)= 58.18 microg x h x mL(-1) and longest t(1/2) (4.29 h) and MRT (5.31 h). Kidney and spleen AUC(0-->infinity) were 47.98 microg x h x mL(-1) and 23.46 microg x h x mL(-1), respectively. Half-life was 1.83 h for the kidney and 3.37 h for the spleen. Imatinib penetrated into the brain reaching approximately 1 microg x g(-1). Upon correction by organ blood flow the spleen showed the largest uptake efficiency. Liposomal imatinib presented extensive biodistribution. The drug uptake kinetics showed mechanism differences amongst the tissues. These findings encourage the development of novel imatinib formulations to treat other cancers.
    Matched MeSH terms: Brain/metabolism
  11. Mohd-Yusof NY, Monroig O, Mohd-Adnan A, Wan KL, Tocher DR
    Fish Physiol Biochem, 2010 Dec;36(4):827-43.
    PMID: 20532815 DOI: 10.1007/s10695-010-9409-4
    Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
    Matched MeSH terms: Brain/metabolism*
  12. Soga T, Wong DW, Clarke IJ, Parhar IS
    Neuropharmacology, 2010 Jul-Aug;59(1-2):77-85.
    PMID: 20381503 DOI: 10.1016/j.neuropharm.2010.03.018
    Citalopram is the most potent selective serotonin reuptake inhibitor (SSRI) which is used as an antidepressant but causes sexual dysfunction. Whether citalopram induced sexual dysfunction is a result of gonadotropin-releasing hormone (GnRH), kisspeptin or RF-amide related peptide (RFRP) alteration is unknown. In this study, we tested mice for sexual behavior after vehicle (0.9% NaCl) and citalopram treatment (5 mg/kg) daily for 1 day (acute) and 21 or 28 days (chronic). Effects of acute and chronic treatments on neuronal numbers and mRNA expression of GnRH, kisspeptin and RFRP were measured. In addition, RFRP fiber projections to preoptic (POA)-GnRH neurons were analyzed using double-label immunohistochemistry. The expression of 14 different serotonin receptor types mRNA was examined in immunostained laser dissected single RFRP neurons in the dorsomedial hypothalamus (DMH), however only 11 receptors types were identified. Acute citalopram treatment did not affect sexual behavior, whereas, the total duration of intromission was reduced with chronic treatment. There was no effect in the expression of kisspeptin (neuronal numbers and mRNA) in the anteroventral periventricular nucleus and the arcuate nucleus and expression of GnRH (neuronal numbers and mRNA) in the POA after citalopram treatment. However, RFRP neuronal numbers in the DMH and fiber projections to the POA were significantly increased after chronic citalopram treatment, which suggests citalopram induced inhibition of sexual behavior involves the modulation of RFRP through serotonin receptors in the DMH.
    Matched MeSH terms: Brain/metabolism
  13. Mani V, Parle M, Ramasamy K, Abdul Majeed AB
    J Sci Food Agric, 2011 Jan 15;91(1):186-92.
    PMID: 20848667 DOI: 10.1002/jsfa.4171
    Coriandrum sativum L., commonly known as coriander and belonging to the family Apiaceae (Umbelliferae), is cultivated throughout the world for its nutritional value. The present study was undertaken to investigate the effects of fresh Coriandrum sativum leaves (CSL) on cognitive functions, total serum cholesterol levels and brain cholinesterase activity in mice. In this study, CSL (5, 10 and 15% w/w of diet) was fed orally with a specially prepared diet for 45 days consecutively to experimental animals. Elevated plus-maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam, scopolamine and ageing-induced amnesia served as the interoceptive behavioral models.
    Matched MeSH terms: Brain/metabolism
  14. Swamy M, Yusof WR, Sirajudeen KN, Mustapha Z, Govindasamy C
    J Physiol Biochem, 2011 Mar;67(1):105-13.
    PMID: 20960085 DOI: 10.1007/s13105-010-0054-2
    To understand their role in epilepsy, the nitric oxide synthetase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite (NOx), thiobarbituric acid reactive substances (TBARS), and total antioxidant status (TAS), were estimated in different regions of brain in rats subjected to experimental epilepsy induced by subcutaneous administration of kainic acid (KA). The short-term (acute) group animals were killed after 2 h and the long term (chronic) group animals were killed after 5 days of single injection of KA (15 mg/kg body weight). After decapitation of rats, the brain regions were separated and in their homogenates, the concentration of NOx, TBARS and TAS and the activities of NOS, AS, AL, arginase and glutamine synthetase were assayed by colorimetric methods. The results of the study demonstrated the increased activity of NOS and formation of NO in acute and chronic groups epilepsy. The activities of AS and AL were increased and indicate the effective recycling of citrulline to arginine. The activity of glutamine synthetase was decreased in acute and chronic groups of epilepsy compared to control group and indicate the modulation of its activity by NO in epilepsy. The activity of arginase was not changed in acute group; however it was decreased in chronic group and may favor increased production of NO in this condition. The concentration TBARS were increased and TAS decreased in acute and chronic groups of epilepsy and supports the oxidative stress in epilepsy.
    Matched MeSH terms: Brain/metabolism*
  15. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    PMID: 22036750 DOI: 10.1016/j.cbpa.2011.10.003
    Physiological responses to social isolation stress were compared in 56-day-old male Japanese quail. Birds were fed pretreated diets for 3 days as follows: (i) Basal diet (control); (ii) Basal diet+1500 mg/kg metyrapone (BM); (iii) Basal diet+30 mg/kg corticosterone (BCO); (iv) Basal diet+250 mg/kg ascorbic acid (BC); (v) Basal diet+250 mg/kg α-tocopherol (BE); (vi) Basal diet+250 mg/kg ascorbic acid and 250 mg/kg α-tocopherol (BCE). The birds were subsequently socially isolated in individual opaque brown paper box for 2 hours. Plasma corticosterone (CORT) concentration and heart and brain heat shock protein 70 (Hsp 70) expressions were determined before stress and immediately after stress. Two hours of isolation stress elevated CORT concentration significantly in the control and BE birds but not in the BC, BCE and BM birds. There was a significant reduction in CORT concentration after isolation stress in the BCO group. Isolation stress increased Hsp 70 expression in the brain and heart of control and BM birds. However, brain and heart Hsp 70 expressions were not significantly altered in the isolated BC, BCE and BE birds. Although, the CORT concentration of BM birds was not affected by isolation stress, Hsp70 expression in both brain and heart were significantly increased. Moreover, exogenous corticosterone supplementation did not result in elevation of Hsp 70 expression. It can be concluded that, although Hsp 70 induction had not been directly affected by CORT concentration, it may be modulated by the HPA axis function via activation of ACTH.
    Matched MeSH terms: Brain/metabolism
  16. Chew WK, Segarra I, Ambu S, Mak JW
    Antimicrob Agents Chemother, 2012 Apr;56(4):1762-8.
    PMID: 22271863 DOI: 10.1128/AAC.05183-11
    Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC(0-∞)) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC(0-∞) values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment.
    Matched MeSH terms: Brain/metabolism
  17. Ogawa S, Ng KW, Ramadasan PN, Nathan FM, Parhar IS
    Endocrinology, 2012 May;153(5):2398-407.
    PMID: 22454151 DOI: 10.1210/en.2012-1062
    The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
    Matched MeSH terms: Brain/metabolism*
  18. Parhar I, Ogawa S, Kitahashi T
    Prog. Neurobiol., 2012 Aug;98(2):176-96.
    PMID: 22684005 DOI: 10.1016/j.pneurobio.2012.05.011
    Hypothalamic gonadotropin-releasing hormone (GnRH) is a key hormone for reproductive functions in vertebrates and non-vertebrates. Although GnRH neuronal system is regulated by several factors such as steroids, neurotransmitters and neuropeptides, it is not fully understood how environmental signals control the GnRH neuronal system. RFamide peptides, members of peptides possessing an Arg-Phe-NH(2) motif at their C-terminus, have recently been characterized as major regulators of GnRH neurons. In particular, two key RFamide peptides, kisspeptin and gonadotropin-inhibitory hormone (GnIH), are emerging as important regulators of the reproductive axis. Kisspeptin acts as the accelerator, directly driving GnRH neurons, whereas GnIH acts as the restraint. In addition, other RFamide peptides such as prolactin-releasing peptide (PrRP), PQRFa peptide, 26RFa/QRFP are also known to control reproduction. These RFamide peptides are regulated by environmental factors such as photoperiods, steroid hormones, metabolic signals, and stress. How environmental signals are integrated by RFamide peptides to regulate reproduction through the GnRH neurons?
    Matched MeSH terms: Brain/metabolism*
  19. Ogawa S, Ramadasan PN, Goschorska M, Anantharajah A, Ng KW, Parhar IS
    J. Comp. Neurol., 2012 Sep 1;520(13):2991-3012.
    PMID: 22430310 DOI: 10.1002/cne.23103
    The tachykinins are a family of neuropeptides, including substance P (SP), neurokinin A (NKA), and neurokinin B (NKB), that are encoded by the tac1 (SP and NKA) or tac2/3 (NKB) genes. Tachykinins are widely distributed in the central nervous system and have roles as neurotransmitters and/or neuromodulators. Recent studies in mammals have demonstrated the coexpression of NKB and kisspeptin and their comodulatory roles over the control of reproduction. We have recently identified two kisspeptin-encoding genes, kiss1 and kiss2, in teleosts. However, such relationship between tachykinins and kisspeptins has not been demonstrated in non-mammalian species. To determine the involvement of tachykinins in the reproduction in teleosts, we identified tac1 and two tac2 (tac2a and tac2b) sequences in the zebrafish genome using in silico data mining. Zebrafish tac1 encodes SP and NKA, whereas the tac2 sequences encode NKB and an additional peptide homologous to NKB (NKB-related peptide). Digoxigenin in situ hybridization in the brain of zebrafish showed tac1 mRNA-containing cells in the olfactory bulb, telencephalon, preoptic region, hypothalamus, mesencephalon, and rhombencephalon. The zebrafish tac2a mRNA-containing cells were observed in the preoptic region, habenula, and hypothalamus, whereas the tac2b mRNA-containing cells were predominantly observed in the dorsal telencephalic area. Furthermore, we examined the coexpression of tachykinins and two kisspeptin genes in the brain of zebrafish. Dual fluorescent in situ hybridization showed no coexpression of tachykinins mRNA with kisspeptins mRNA in hypothalamic nuclei or the habenula. These results suggest the presence of independent pathways for kisspeptins and NKB neurons in the brain of zebrafish.
    Matched MeSH terms: Brain/metabolism*
  20. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Brain/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links