Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Gupta D, Singh A, Somvanshi P, Singh A, Khan AU
    ACS Omega, 2020 Apr 28;5(16):9356-9365.
    PMID: 32363287 DOI: 10.1021/acsomega.0c00356
    The manifestation of class D β-lactamases in the community raises significant concern as they can hydrolyze carbapenem antibiotics. Hence, it is exceptionally alluring to design novel inhibitors. Structure-based virtual screening using docking programs and molecular dynamics simulations was employed to identify two novel non-β-lactam compounds that possess the ability to block different OXA variants. Furthermore, the presence of a nonpolar aliphatic amino acid, valine, near the active site serine, was identified in all OXA variants that can be accounted to block the catalytic activity of OXA enzymes.
    Matched MeSH terms: Carbapenems
  2. Ngoi ST, Teh CSJ, Chong CW, Abdul Jabar K, Tan SC, Yu LH, et al.
    Antibiotics (Basel), 2021 Feb 11;10(2).
    PMID: 33670224 DOI: 10.3390/antibiotics10020181
    The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76-80%), ticarcillin-clavulanate (58-76%), and piperacillin-tazobactam (48-50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.
    Matched MeSH terms: Carbapenems
  3. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
    Matched MeSH terms: Carbapenems/pharmacology*
  4. Hancock SJ, Phan MD, Peters KM, Forde BM, Chong TM, Yin WF, et al.
    PMID: 27872077 DOI: 10.1128/AAC.01740-16
    Plasmids of incompatibility group A/C (IncA/C) are becoming increasingly prevalent within pathogenic Enterobacteriaceae They are associated with the dissemination of multiple clinically relevant resistance genes, including blaCMY and blaNDM Current typing methods for IncA/C plasmids offer limited resolution. In this study, we present the complete sequence of a blaNDM-1-positive IncA/C plasmid, pMS6198A, isolated from a multidrug-resistant uropathogenic Escherichia coli strain. Hypersaturated transposon mutagenesis, coupled with transposon-directed insertion site sequencing (TraDIS), was employed to identify conserved genetic elements required for replication and maintenance of pMS6198A. Our analysis of TraDIS data identified roles for the replicon, including repA, a toxin-antitoxin system; two putative partitioning genes, parAB; and a putative gene, 053 Construction of mini-IncA/C plasmids and examination of their stability within E. coli confirmed that the region encompassing 053 contributes to the stable maintenance of IncA/C plasmids. Subsequently, the four major maintenance genes (repA, parAB, and 053) were used to construct a new plasmid multilocus sequence typing (PMLST) scheme for IncA/C plasmids. Application of this scheme to a database of 82 IncA/C plasmids identified 11 unique sequence types (STs), with two dominant STs. The majority of blaNDM-positive plasmids examined (15/17; 88%) fall into ST1, suggesting acquisition and subsequent expansion of this blaNDM-containing plasmid lineage. The IncA/C PMLST scheme represents a standardized tool to identify, track, and analyze the dissemination of important IncA/C plasmid lineages, particularly in the context of epidemiological studies.
    Matched MeSH terms: Carbapenems/pharmacology
  5. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Carbapenems/blood; Carbapenems/pharmacokinetics*; Carbapenems/pharmacology
  6. Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P
    Antimicrob Agents Chemother, 2002 Oct;46(10):3286-7.
    PMID: 12234862
    We have isolated and identified a carbapenem-resistant Pseudomonas aeruginosa strain from Malaysia that produces an IMP-7 metallo-beta-lactamase. This isolate showed high-level resistance to meropenem and imipenem, the MICs of which were 256 and 128 micro g/ml, respectively. Isoelectric focusing analyses revealed pI values of >9.0, 8.2, and 7.8, which indicated the possible presence of IMP and OXA. DNA sequencing confirmed the identity of the IMP-7 determinant.
    Matched MeSH terms: Carbapenems/pharmacology*
  7. Harris PN, Yin M, Jureen R, Chew J, Ali J, Paynter S, et al.
    PMID: 25932324 DOI: 10.1186/s13756-015-0055-6
    Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae are often susceptible in vitro to β-lactam/β-lactamase inhibitor (BLBLI) combination antibiotics, but their use has been limited by concerns of clinical inefficacy. We aimed to compare outcomes between patients treated with BLBLIs and carbapenems for bloodstream infection (BSI) caused by cefotaxime non-susceptible (likely ESBL- or AmpC β-lactamase-producing) Escherichia coli and Klebsiella pneumoniae.
    Matched MeSH terms: Carbapenems
  8. Zaidah AR, Mohammad NI, Suraiya S, Harun A
    PMID: 28473912 DOI: 10.1186/s13756-017-0200-5
    BACKGROUND: Infections by multidrug-resistant gram-negative bacteria (MDR-GNB) have been continuously growing and pose challenge to health institution globally. Carbapenem-resistant Enterobacteriacea (CRE) was identified as one of the MDR-GNB which has limited treatment options and higher mortality compared to those of sensitive strains. We report an increased burden of CRE fecal carriage at a hospital in the North-eastern region of Malaysia.

    METHODS: A retrospective descriptive study from August 2013 to December 2015 was conducted in the Medical Microbiology & Parasitology laboratory of Hospital Universiti Sains Malaysia, which is a tertiary teaching hospital with more than 700 beds. This hospital treats patients with various medical and surgical conditions. Suspected CRE from any clinical specimens received by the laboratory was identified and confirmed using standard protocols. Polymerase chain reaction (PCR) assay was performed to determine the genotype.

    RESULTS: Altogether, 8306 Enterobacteriaceae was isolated from various clinical specimens during the study period and 477/8306 (5.74%) were CRE. Majority of the isolated CRE were Klebsiella [408/477, (85.5%)], of which Klebsiella pneumoniae was the predominant species, 388/408 (95%). CRE were mainly isolated from rectal swab (screening), 235/477 (49.3%); urine, 76/477 (15.9%); blood, 46/477 (9.6%) and about 7.1% from tracheal aspirate. One hundred and thirty-six isolates were subjected to genotype determination and., 112/136 (82.4%) showed positive detection of New Delhi metallo-β-lactamase 1 (NDM-1) gene (blaNDM1).

    CONCLUSION: The study noted a high numbers of CRE isolated especially from rectal swabs. Active screening results in significant cost pressures and therefore should be revisited and revised, especially in low resource settings.

    Matched MeSH terms: Carbapenems
  9. Das S, Pandey AK, Morris DE, Anderson R, Lim V, Wie CC, et al.
    BMC Genomics, 2024 Apr 17;25(1):381.
    PMID: 38632538 DOI: 10.1186/s12864-024-10276-4
    Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
    Matched MeSH terms: Carbapenems
  10. Zahra N, Zeshan B, Ishaq M
    BMC Microbiol, 2022 Dec 03;22(1):290.
    PMID: 36463105 DOI: 10.1186/s12866-022-02706-8
    Acinetobacter baumannii (A. baumannii) is one of the members of ESKAPE bacteria which is considered multidrug resistant globally. The objective of this study is to determine the protein docking of different antibiotic resistance gene (ARGs) in A. baumannii. In silico analysis of antibiotic resistance genes against carbapenem are the blaOXA-51, blaOXA-23, blaOXA-58, blaOXA-24, blaOXA-143, NMD-1 and IMP-1 in A. baumannii. The doripenem, imipenem and meropenem were docked to blaOXA-51 and blaOXA-23 using PyRx. The top docking energy was -5.5 kcal/mol by imipenem and doripenem and meropenem showed a binding score of -5. 2 kcal/mol each and blaOXA-23 energy was -4.3 kcal/mol by imipenem and meropenem showed a binding score of -2.3 kcal/mol, while doripenem showed the binding score of -3.4 kcal/mol. Similarly, doripenem imipenem and meropenem were docked to blaOXA-58, IMP-1, Rec A and blaOXA-143, with docking energy was -8.8 kcal/mol by doripenem and meropenem each while imipenem showed a binding score of -4.2 kcal/mol and with IMP-1 demonstrated their binding energies. was -5.7 kcal/mol by meropenem and doripenem showed a binding score of -5.3 kcal/mol, while imipenem showed a binding score of -4.5 kcal/mol. And docking energy was -4.9 kcal/mol by imipenem and meropenem showed binding energy of -3.6 kcal/mol each while doripenem showed a binding score of -3.9 kcal/mol in RecA and with blaOXA-143 docking energy was -3.0 kcal/mol by imipenem and meropenem showed a binding score of -1.9 kcal/mol, while doripenem showed the binding score of -2.5 kcal/mol respectively. Doripenem, imipenem, and meropenem docking findings with blaOXA-24 confirmed their binding energies. Doripenem had the highest docking energy of -5.5 kcal/mol, meropenem had a binding score of -4.0 kcal/mol, and imipenem had a binding score of -3.9 kcal/mol. PyRx was used to dock the doripenem, imipenem, and meropenem to NMD-1. Docking energies for doripenem were all - 4.0 kcal/mol, whereas meropenem had docking energy of -3.3 kcal/mol and imipenem was -1.50 kcal/mol. To the best of our knowledge the underlying mechanism of phenotypic with genotypic resistance molecular docking regarding carbapenem resistance A. baumannii is unclear. Our molecular docking finds the possible protein targeting mechanism for carbapenem-resistant A.baumannii.
    Matched MeSH terms: Carbapenems/pharmacology
  11. Shahar S, Arimuthu DA, Mazlan SA
    BMC Nephrol, 2022 Nov 08;23(1):360.
    PMID: 36348388 DOI: 10.1186/s12882-022-02980-8
    BACKGROUND: Carbapenem-induced neurotoxicity is an unusual side effect, with seizure being the most commonly reported symptom. Among the carbapenems, imipenem-cilastin is classically associated with the most severe neurotoxicity side effects. Carbapenem is mainly excreted by the kidney and its half-life is significantly increased in patients with chronic kidney disease (CKD). Therefore, dose adjustment is necessary in such patients. Ertapenem-associated neurotoxicity is increasingly being reported in CKD patients, but rarely seen in patients with recommended dose adjustment.

    CASE PRESENTATION: We report a case of a 56-year-old male patient with chronic kidney disease 5 on dialysis(CKD 5D). The patient presented with a history of fever, chills and rigours during a session of haemodialysis (HD). He was diagnosed with Enterobacter cloacae catheter-related blood stream infection and was started on ertapenem. After 13 days of ertapenem, he experienced an acute confusional state and progressed to having auditory and visual hallucinations. His blood investigations and imaging results revealed no other alternative diagnosis. Hence a diagnosis of ertapenem-induced neurotoxicity was made. He had complete resolution of symptoms after 10 days' discontinuation of ertapenem.

    CONCLUSION: Our case draws attention to the risk of potentially serious toxicity of the central nervous system in HD patients who receive the current recommended dose of ertapenem. It also highlights that renal dosing in CKD 5D patients' needs to be clinically studied to ensure antibiotic safety.

    Matched MeSH terms: Carbapenems
  12. Yap PS, Cheng WH, Chang SK, Lim SE, Lai KS
    Cells, 2022 Sep 26;11(19).
    PMID: 36230959 DOI: 10.3390/cells11192995
    There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
    Matched MeSH terms: Carbapenems/pharmacology; Carbapenems/therapeutic use
  13. Hamzan NI, Yean CY, Rahman RA, Hasan H, Rahman ZA
    Emerg Health Threats J, 2015;8:26011.
    PMID: 25765342 DOI: 10.3402/ehtj.v8.26011
    Background : Antibiotic resistance among Enterobacteriaceae posts a great challenge to the health care service. The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) is attracting significant attention due to its rapid and global dissemination. The infection is associated with significant morbidity and mortality, thus creating challenges for infection control and managing teams to curb the infection. In Southeast Asia, there have been limited reports and subsequent research regarding CRKP infections. Thus, the study was conducted to characterize CRKP that has been isolated in our setting. Methods : A total of 321 K. pneumoniae were included in the study. Each isolate went through an identification process using an automated identification system. Phenotypic characterization was determined using disk diffusion, modified Hodge test, Epsilometer test, and inhibitor combined disk test. Further detection of carbapenemase genes was carried out using polymerase chain reaction and confirmed by gene sequence analysis. Results : All together, 13 isolates (4.05%) were CRKP and the majority of them were resistant to tested antibiotics except colistin and tigercycline. Among seven different carbapenemase genes studied (blaKPC, bla IMP, bla SME, bla NDM, bla IMI, bla VIM, and bla OXA), only two, bla IMP4 (1.87%) and bla NDM1 (2.18%), were detected in our setting. Conclusion : Evidence suggests that the prevalence of CRKP in our setting is low, and knowledge of Carbapenem-resistant Enterobacteriaceae and CRKP has improved and become available among clinicians.
    Matched MeSH terms: Carbapenems/pharmacology*
  14. Quintero-Yanes A, Lee CM, Monson R, Salmond G
    Environ Microbiol, 2020 07;22(7):2921-2938.
    PMID: 32352190 DOI: 10.1111/1462-2920.15048
    Serratia sp. ATCC 39006 produces intracellular gas vesicles to enable upward flotation in water columns. It also uses flagellar rotation to swim through liquid and swarm across semi-solid surfaces. Flotation and motility can be co-regulated with production of a β-lactam antibiotic (carbapenem carboxylate) and a linear tripyrrole red antibiotic, prodigiosin. Production of gas vesicles, carbapenem and prodigiosin antibiotics, and motility are controlled by master transcriptional and post-transcriptional regulators, including the SmaI/SmaR-based quorum sensing system and the mRNA binding protein, RsmA. Recently, the ribose operon repressor, RbsR, was also defined as a pleiotropic regulator of flotation and virulence factor elaboration in this strain. Here, we report the discovery of a new global regulator (FloR; a DeoR family transcription factor) that modulates flotation through control of gas vesicle morphogenesis. The floR mutation is highly pleiotropic, down-regulating production of gas vesicles, carbapenem and prodigiosin antibiotics, and infection in Caenorhabditis elegans, but up-regulating flagellar motility. Detailed proteomic analysis using TMT peptide labelling and LC-MS/MS revealed that FloR is a physiological master regulator that operates through subordinate pleiotropic regulators including Rap, RpoS, RsmA, PigU, PstS and PigT.
    Matched MeSH terms: Carbapenems/biosynthesis
  15. Mohd Sazlly Lim S, Heffernan AJ, Zowawi HM, Roberts JA, Sime FB
    Eur J Clin Microbiol Infect Dis, 2021 Sep;40(9):1943-1952.
    PMID: 33884516 DOI: 10.1007/s10096-021-04252-z
    Due to limited treatment options for carbapenem-resistant Acinetobacter baumannii (CR-AB) infections, antibiotic combinations are commonly used. In this study, we explored the potential efficacy of meropenem-sulbactam combination (MEM/SUL) against CR-AB. The checkerboard method was used to screen for synergistic activity of MEM/SUL against 50 clinical CR-AB isolates. Subsequently, time-kill studies against two CR-AB isolates were performed. Time-kill data were described using a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Subsequently, Monte Carlo simulations were performed to estimate the probability of 2-log kill, 1-log kill or stasis at 24-h following combination therapy. The MEM/SUL demonstrated synergy against 28/50 isolates. No antagonism was observed. The MIC50 and MIC90 of MEM/SUL were decreased fourfold, compared to the monotherapy MIC. In the time-kill studies, the combination displayed synergistic killing against both isolates at the highest clinically achievable concentrations. At concentrations equal to the fractional inhibitory concentration, synergism was observed against one isolate. The PK/PD model adequately delineated the data and the interaction between meropenem and sulbactam. The effect of the combination was driven by sulbactam, with meropenem acting as a potentiator. The simulations of various dosing regimens revealed no activity for the monotherapies. At best, the MEM/SUL regimen of 2 g/4 g every 8 h demonstrated a probability of target attainment of 2-log10 kill at 24 h of 34%. The reduction in the MIC values and the achievement of a moderate PTA of a 2-log10 reduction in bacterial burden demonstrated that MEM/SUL may potentially be effective against some CR-AB infections.
    Matched MeSH terms: Carbapenems/pharmacology*
  16. Chung PY
    FEMS Microbiol Lett, 2016 10;363(20).
    PMID: 27664057
    Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
    Matched MeSH terms: Carbapenems/therapeutic use*
  17. Lean SS, Yeo CC, Suhaili Z, Thong KL
    Front Microbiol, 2015;6:1445.
    PMID: 26779129 DOI: 10.3389/fmicb.2015.01445
    Acinetobacter baumannii is a Gram-negative nosocomial pathogen of importance due to its uncanny ability to acquire resistance to most antimicrobials. These include carbapenems, which are the drugs of choice for treating A. baumannii infections, and polymyxins, the drugs of last resort. Whole genome sequencing was performed on two clinical carbapenem-resistant A. baumannii AC29 and AC30 strains which had an indistinguishable ApaI pulsotype but different susceptibilities to polymyxin. Both genomes consisted of an approximately 3.8 Mbp circular chromosome each and several plasmids. AC29 (susceptible to polymyxin) and AC30 (resistant to polymyxin) belonged to the ST195 lineage and are phylogenetically clustered under the International Clone II (IC-II) group. An AbaR4-type resistance island (RI) interrupted the comM gene in the chromosomes of both strains and contained the bla OXA-23 carbapenemase gene and determinants for tetracycline and streptomycin resistance. AC29 harbored another copy of bla OXA-23 in a large (~74 kb) conjugative plasmid, pAC29b, but this gene was absent in a similar plasmid (pAC30c) found in AC30. A 7 kb Tn1548::armA RI which encodes determinants for aminoglycoside and macrolide resistance, is chromosomally-located in AC29 but found in a 16 kb plasmid in AC30, pAC30b. Analysis of known determinants for polymyxin resistance in AC30 showed mutations in the pmrA gene encoding the response regulator of the two-component pmrAB signal transduction system as well as in the lpxD, lpxC, and lpsB genes that encode enzymes involved in the biosynthesis of lipopolysaccharide (LPS). Experimental evidence indicated that impairment of LPS along with overexpression of pmrAB may have contributed to the development of polymyxin resistance in AC30. Cloning of a novel variant of the bla AmpC gene from AC29 and AC30, and its subsequent expression in E. coli also indicated its likely function as an extended-spectrum cephalosporinase.
    Matched MeSH terms: Carbapenems
  18. Gan HM, Rajasekaram G, Eng WWH, Kaniappan P, Dhanoa A
    Genome Announc, 2017 Aug 10;5(32).
    PMID: 28798179 DOI: 10.1128/genomeA.00768-17
    We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital.
    Matched MeSH terms: Carbapenems
  19. Chua WC, Mazlan MZ, Ali S, Che Omar S, Wan Hassan WMN, Seevaunnantum SP, et al.
    IDCases, 2017;9:91-94.
    PMID: 28725564 DOI: 10.1016/j.idcr.2017.05.002
    We report a fatal case of post-partum streptococcal toxic shock syndrome in a patient who was previously healthy and had presented to the emergency department with an extensive blistering ecchymotic lesions over her right buttock and thigh associated with severe pain. The pregnancy had been uncomplicated, and the mode of delivery had been spontaneous vaginal delivery with an episiotomy. She was found to have septicemic shock requiring high inotropic support. Subsequently, she was treated for necrotizing fasciitis, complicated by septicemic shock and multiple organ failures. A consensus was reached for extensive wound debridement to remove the source of infection; however, this approach was abandoned due to the patient's hemodynamic instability and the extremely high risks of surgery. Both the high vaginal swab and blister fluid culture revealed Group A beta hemolytic streptococcus infection. Intravenous carbapenem in combination with clindamycin was given. Other strategies attempted for streptococcal toxic removal included continuous veno-venous hemofiltration and administration of intravenous immunoglobulin. Unfortunately, the patient's condition worsened, and she succumbed to death on day 7 of hospitalization.
    Matched MeSH terms: Carbapenems
  20. Urmi UL, Nahar S, Rana M, Sultana F, Jahan N, Hossain B, et al.
    Infect Drug Resist, 2020;13:2863-2875.
    PMID: 32903880 DOI: 10.2147/IDR.S262493
    Introduction: Klebsiella pneumoniae carbapenemase (KPC) belongs to the Group-A β-lactamases that incorporate serine at their active site and hydrolyze various penicillins, cephalosporins, and carbapenems. Metallo-beta-lactamases (MBLs) are group-B enzymes that contain one or two essential zinc ions in the active sites and hydrolyze almost all clinically available β-lactam antibiotics. Klebsiella pneumoniae remains the pathogen with the most antimicrobial resistance to KPC and MBLs.

    Methods: This research investigated the blaKPC, and MBL genes, namely, blaIMP, blaVIM, and blaNDM-1 and their phenotypic resistance to K. pneumoniae isolated from urinary tract infections (UTI) in Bangladesh. Isolated UTI K. pneumoniae were identified by API-20E and 16s rDNA gene analysis. Their phenotypic antimicrobial resistance was examined by the Kirby-Bauer disc diffusion method, followed by minimal inhibitory concentration (MIC) determination. blaKPC, blaIMP, blaNDM-1, and blaVIM genes were evaluated by polymerase chain reactions (PCR) and confirmed by sequencing.

    Results: Fifty-eight K. pneumoniae were identified from 142 acute UTI cases. Their phenotypic resistance to amoxycillin-clavulanic acid, cephalexin, cefuroxime, ceftriaxone, and imipenem were 98.3%, 100%, 96.5%, 91.4%, 75.1%, respectively. Over half (31/58) of the isolates contained either blaKPC or one of the MBL genes. Individual prevalence of blaKPC, blaIMP, blaNDM-1, and blaVIM were 15.5% (9), 10.3% (6), 22.4% (13), and 19% (11), respectively. Of these, eight isolates (25.8%, 8/31) were found to have two genes in four different combinations. The co-existence of the ESBL genes generated more resistance than each one individually. Some isolates appeared phenotypically susceptible to imipenem in the presence of blaKPC, blaIMP, blaVIM, and blaNDM-1 genes, singly or in combination.

    Conclusion: The discrepancy of genotype and phenotype resistance has significant consequences for clinical bacteriology, precision in diagnosis, the prudent selection of antimicrobials, and rational prescribing. Heterogeneous phenotypes of antimicrobial susceptibility testing should be taken seriously to avoid inappropriate diagnostic and therapeutic decisions.

    Matched MeSH terms: Carbapenems
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links