Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Ong YH, Chua AS, Lee BP, Ngoh GC
    Water Sci Technol, 2013;67(2):340-6.
    PMID: 23168633 DOI: 10.2166/wst.2012.552
    To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
    Matched MeSH terms: Carbon/analysis*
  2. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
    Matched MeSH terms: Carbon/analysis*
  3. Bashir MJ, Isa MH, Kutty SR, Awang ZB, Aziz HA, Mohajeri S, et al.
    Waste Manag, 2009 Sep;29(9):2534-41.
    PMID: 19523802 DOI: 10.1016/j.wasman.2009.05.004
    This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na(2)SO(4) (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na(2)SO(4) concentration was 1 g/L. Experiments were conducted based on a three-level factorial design and response surface methodology (RSM) was used to analyze the results. The optimum conditions were obtained as 1414 mg/L influent COD concentration, 79.9 mA/cm(2) current density and 4 h reaction time. This resulted in 70% BOD removal, 68% COD removal, 84% color removal, 0.04 BOD/COD ratio and 9.1 pH. Electrochemical treatment using graphite carbon electrode was found to be effective in BOD, COD and color removal but was not effective in increasing the BOD/COD ratio or enhancing biodegradability of the leachate. The color intensity of the treated samples increased at low influent COD and high current density due to corrosion of electrode material.
    Matched MeSH terms: Carbon/analysis
  4. Firdaus MS, Husni MH
    ScientificWorldJournal, 2012;2012:405084.
    PMID: 22545018 DOI: 10.1100/2012/405084
    A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO(2)) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO(2) flux showed no significant difference (P < 0.05) between the two plots while no significant changes (P < 0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration.
    Matched MeSH terms: Carbon/analysis
  5. Ch'ng HY, Ahmed OH, Majid NM
    ScientificWorldJournal, 2011;11:532-45.
    PMID: 21403973 DOI: 10.1100/tsw.2011.54
    Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0-20 to 40-60 cm were observed, suggesting C buildup from the lowest depths 20-40 and 40-60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages.
    Matched MeSH terms: Carbon/analysis*
  6. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
    Matched MeSH terms: Carbon/analysis*
  7. Stankovic M, Ambo-Rappe R, Carly F, Dangan-Galon F, Fortes MD, Hossain MS, et al.
    Sci Total Environ, 2021 Aug 20;783:146858.
    PMID: 34088119 DOI: 10.1016/j.scitotenv.2021.146858
    Seagrasses have the ability to contribute towards climate change mitigation, through large organic carbon (Corg) sinks within their ecosystems. Although the importance of blue carbon within these ecosystems has been addressed in some countries of Southeast Asia, the regional and national inventories with the application of nature-based solutions are lacking. In this study, we aim to estimate national coastal blue carbon stocks in the seagrass ecosystems in the countries of Southeast Asia including the Andaman and Nicobar Islands of India. This study further assesses the potential of conservation and restoration practices and highlights the seagrass meadows as nature-based solution for climate change mitigation. The average value of the total carbon storage within seagrass meadows of this region is 121.95 ± 76.11 Mg ha-1 (average ± SD) and the total Corg stock of the seagrass meadows of this region was 429.11 ± 111.88 Tg, with the highest Corg stock in the Philippines (78%). The seagrass meadows of this region have the capacity to accumulate 5.85-6.80 Tg C year-1, which accounts for $214.6-249.4 million USD. Under the current rate of decline of 2.82%, the seagrass meadows are emitting 1.65-2.08 Tg of CO2 year-1 and the economic value of these losses accounts for $21.42-24.96 million USD. The potential of the seagrass meadows to the offset current CO2 emissions varies across the region, with the highest contribution to offset is in the seagrass meadows of the Philippines (11.71%). Current national policies and commitments of nationally determined contributions do not include blue carbon ecosystems as climate mitigation measures, even though these ecosystems can contribute up to 7.03% of the countries' reduction goal of CO2 emissions by 2030. The results of this study highlight and promote the potential of the southeast Asian seagrass meadows to national and international agencies as a practical scheme for nature-based solutions for climate change mitigation.
    Matched MeSH terms: Carbon/analysis
  8. McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 1):159356.
    PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356
    While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
    Matched MeSH terms: Carbon/analysis
  9. Saner P, Loh YY, Ong RC, Hector A
    PLoS One, 2012;7(1):e29642.
    PMID: 22235319 DOI: 10.1371/journal.pone.0029642
    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha⁻¹±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha⁻¹±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha⁻¹±0.5 SEM), deadwood (8%; 13.2 Mg C ha⁻¹±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha⁻¹±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha⁻¹±1.7 SEM), standing litter (<1%; 0.7 Mg C ha⁻¹±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha⁻¹±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha⁻¹ yr⁻¹±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha⁻¹ yr⁻¹±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration.Twenty-two years after logging TAGC stocks were 28% lower compared to unlogged forest (128 Mg C ha⁻¹±13.4 SEM); a combined weighted average mean reduction due to selective logging of -57.8 Mg C ha⁻¹ (with 95% CI -75.5 to -40.2). Based on the findings we conclude that selective logging decreased the dipterocarp stock by 55-66%. Silvicultural treatments may have the potential to accelerate the recovery of dipterocarp C stocks to pre-logging levels.
    Matched MeSH terms: Carbon/analysis*
  10. Rafiq MK, Bachmann RT, Rafiq MT, Shang Z, Joseph S, Long R
    PLoS One, 2016;11(6):e0156894.
    PMID: 27327870 DOI: 10.1371/journal.pone.0156894
    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.
    Matched MeSH terms: Carbon/analysis*
  11. Brown C, Boyd DS, Sjögersten S, Vane CH
    PLoS One, 2023;18(3):e0280187.
    PMID: 36989287 DOI: 10.1371/journal.pone.0280187
    Tropical peatlands are important carbon stores that are vulnerable to drainage and conversion to agriculture. Protection and restoration of peatlands are increasingly recognised as key nature based solutions that can be implemented as part of climate change mitigation. Identification of peatland areas that are important for protection and restauration with regards to the state of their carbon stocks, are therefore vital for policy makers. In this paper we combined organic geochemical analysis by Rock-Eval (6) pyrolysis of peat collected from sites with different land management history and optical remote sensing products to assess if remotely sensed data could be used to predict peat conditions and carbon storage. The study used the North Selangor Peat Swamp forest, Malaysia, as the model system. Across the sampling sites the carbon stocks in the below ground peat was ca 12 times higher than the forest (median carbon stock held in ground vegetation 114.70 Mg ha-1 and peat soil 1401.51 Mg ha-1). Peat core sub-samples and litter collected from Fire Affected, Disturbed Forest, and Managed Recovery locations (i.e. disturbed sites) had different decomposition profiles than Central Forest sites. The Rock-Eval pyrolysis of the upper peat profiles showed that surface peat layers at Fire Affected, Disturbed Forest, and Managed Recovery locations had lower immature organic matter index (I-index) values (average I-index range in upper section 0.15 to -0.06) and higher refractory organic matter index (R -index) (average R-index range in upper section 0.51 to 0.65) compared to Central Forest sites indicating enhanced decomposition of the surface peat. In the top 50 cm section of the peat profile, carbon stocks were negatively related to the normalised burns ratio (NBR) (a satellite derived parameter) (Spearman's rho = -0.664, S = 366, p-value = <0.05) while there was a positive relationship between the hydrogen index and the normalised burns ratio profile (Spearman's rho = 0.7, S = 66, p-value = <0.05) suggesting that this remotely sensed product is able to detect degradation of peat in the upper peat profile. We conclude that the NBR can be used to identify degraded peatland areas and to support identification of areas for conversation and restoration.
    Matched MeSH terms: Carbon/analysis
  12. Mahmud K, Weitz H, H Kritzler U, Burslem DFRP
    PLoS One, 2024;19(3):e0297686.
    PMID: 38507439 DOI: 10.1371/journal.pone.0297686
    Aluminium (Al) is toxic to most plants, but recent research has suggested that Al addition may stimulate growth and nutrient uptake in some species capable of accumulating high tissue Al concentrations. The physiological basis of this growth response is unknown, but it may be associated with processes linked to the regulation of carbon assimilation and partitioning by Al supply. To test alternative hypotheses for the physiological mechanism explaining this response, we examined the effects of increasing Al concentrations in the growth medium on tissue nutrient concentrations and carbon assimilation in two populations of the Al-accumulator Melastoma malabathricum. Compared to seedlings grown in a control nutrient solution containing no Al, mean rates of photosynthesis and respiration increased by 46% and 27%, respectively, total non-structural carbohydrate concentrations increased by 45%, and lignin concentration in roots decreased by 26% when seedlings were grown in a nutrient solution containing 2.0 mM Al. The concentrations of P, Ca and Mg in leaves and stems increased by 31%, 22%, and 26%, respectively, in response to an increase in nutrient solution Al concentration from 0 to 2.0 mM. Elemental concentrations in roots increased for P (114%), Mg (61%) and K (5%) in response to this increase in Al concentration in the nutrient solution. Plants derived from an inherently faster-growing population had a greater relative increase in final dry mass, net photosynthetic and respiration rates and total non-structural carbohydrate concentrations in response to higher external Al supply. We conclude that growth stimulation by Al supply is associated with increases in photosynthetic and respiration rates and enhanced production of non-structural carbohydrates that are differentially allocated to roots, as well as stimulation of nutrient uptake. These responses suggest that internal carbon assimilation is up-regulated to provide the necessary resources of non-structural carbohydrates for uptake, transport and storage of Al in Melastoma malabathricum. This physiological mechanism has only been recorded previously in one other plant species, Camellia sinensis, which last shared a common ancestor with M. malabathricum more than 120 million years ago.
    Matched MeSH terms: Carbon/analysis
  13. Yaser AZ, Abd Rahman R, Kalil MS
    Pak J Biol Sci, 2007 Dec 15;10(24):4473-8.
    PMID: 19093514
    Composting of Palm Oil Mill Sludge (POMS) with sawdust was conducted in natural aerated reactor. Composting using natural aerated reactor is cheap and simple. The goal of this study is to observe the potential of composting process and utilizing compost as media for growing Cymbopogun citratus, one of Malaysia herbal plant. The highest maximum temperature achieved is about 40 degrees C and to increase temperature bed, more biodegradable substrate needs to be added. The pH value decrease along the process with final pH compost is acidic (pH 5.7). The highest maximum organic losses are about 50% with final C/N ratio of the compost is about 19. Final compost also showed some fertilizing value but need to be adjusted to obtain an ideal substrate. Addition of about 70% sandy soil causes highest yield and excellent root development for C. citratus in potted media. Beside that, compost from POMS-sawdust also found to have fertilizer value and easy to handle. Composting of POMS with sawdust shows potential as an alternative treatment to dispose and recycle waste components.
    Matched MeSH terms: Carbon/analysis
  14. Osuri AM, Ratnam J, Varma V, Alvarez-Loayza P, Hurtado Astaiza J, Bradford M, et al.
    Nat Commun, 2016 04 25;7:11351.
    PMID: 27108957 DOI: 10.1038/ncomms11351
    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation.
    Matched MeSH terms: Carbon/analysis*
  15. Serrano O, Lovelock CE, B Atwood T, Macreadie PI, Canto R, Phinn S, et al.
    Nat Commun, 2019 10 02;10(1):4313.
    PMID: 31575872 DOI: 10.1038/s41467-019-12176-8
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
    Matched MeSH terms: Carbon/analysis*
  16. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Carbon/analysis
  17. Vaezzadeh V, Zakaria MP, Shau-Hwai AT, Ibrahim ZZ, Mustafa S, Abootalebi-Jahromi F, et al.
    Mar Pollut Bull, 2015 Nov 15;100(1):311-320.
    PMID: 26323864 DOI: 10.1016/j.marpolbul.2015.08.034
    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs.
    Matched MeSH terms: Carbon/analysis
  18. Huang YJ, Brimblecombe P, Lee CL, Latif MT
    Mar Pollut Bull, 2015 Aug 15;97(1-2):78-84.
    PMID: 26093815 DOI: 10.1016/j.marpolbul.2015.06.031
    Samples of sea-surface microlayer (SML) and sub-surface water (SSW) were collected from two areas-Kaohsiung City (Taiwan) and the southwest coast of Peninsular Malaysia to study the influence of SML on enrichment and distribution and to compare SML with the SSW. Anionic surfactants (MBAS) predominated in this study and were significantly higher in Kaohsiung than in Malaysia. Industrial areas in Kaohsiung were enriched with high loads of anthropogenic sources, accounted for higher surfactant amounts, and pose higher environmental disadvantages than in Malaysia, where pollutants were associated with agricultural activities. The dissolved organic carbon (DOC), MBAS, and cationic surfactant (DBAS) concentrations in the SML correlated to the SSW, reflecting exchanges between the SML and SSW in Kaohsiung. The relationships between surfactants and the physiochemical parameters indicated that DOC and saltwater dilution might affect the distributions of MBAS and DBAS in Kaohsiung. In Malaysia, DOC might be the important factor controlling DBAS.
    Matched MeSH terms: Carbon/analysis
  19. Rozainah MZ, Nazri MN, Sofawi AB, Hemati Z, Juliana WA
    Mar Pollut Bull, 2018 Dec;137:237-245.
    PMID: 30503430 DOI: 10.1016/j.marpolbul.2018.10.023
    This paper evaluated the total carbon stock of mangrove ecosystems in two contrasting sites: a fishing village in Delta Kelantan (DK) and Ramsar sites in Johor Park (JP). In both sites, aboveground carbon was significantly higher than belowground carbon, and stems contained more carbon than leaf and root partitions. The average carbon concentration of individual mangrove species (44.9-48.1%) was not significantly different but the larger biomass of the DK samples resulted in vegetation carbon stock that was higher than that in JP. Season played an important role in soil carbon stock-a pronounced wet season in DK coincided with the dry season in JP. The total carbon pool was estimated to be 427.88 t ha-1 in JP and 512.51 t ha-1 in DK, where at least 80% was contributed by soil carbon. The carbon dioxide equivalent was 1570.32 t ha-1 CO2e (JP) and 1880.91 t ha-1 CO2e (DK).
    Matched MeSH terms: Carbon/analysis*
  20. Rozaimi M, Fairoz M, Hakimi TM, Hamdan NH, Omar R, Ali MM, et al.
    Mar Pollut Bull, 2017 Jun 30;119(2):253-260.
    PMID: 28460878 DOI: 10.1016/j.marpolbul.2017.03.073
    Seagrass meadows provide important carbon sequestration services but anthropogenic activities modify the natural ecosystem and inevitably lower carbon storage capacity. The tropical mixed-species meadows in the Sungai Pulai Estuary (Johor, Malaysia) are impacted by such activities. In this study, we provide baseline estimates for carbon stores analysed from sediment cores. In sediment depths up to 100cm, organic (OC) and inorganic carbon (IC) stores were 43-101MgCha-1 and 46-83MgCha-1, respectively, and are in the lower end of global average values. The bulk of OC (53-98%) originated from seston suggesting that the meadows had low capacity to retain seagrass-derived organic matter. The species factor resulted in some variability in OC stores but did not appear to influence IC values. The low carbon stores in the meadow may be a direct result of sediment disturbances but natural biogeochemical processes are not discounted as possible causal factors.
    Matched MeSH terms: Carbon/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links