Displaying publications 1 - 20 of 31 in total

Abstract:
Sort:
  1. Pandey RP, Kallem P, Rasheed PA, Mahmoud KA, Banat F, Lau WJ, et al.
    Chemosphere, 2022 Feb;289:133144.
    PMID: 34863730 DOI: 10.1016/j.chemosphere.2021.133144
    An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
    Matched MeSH terms: Cellulose/analogs & derivatives
  2. Ashraf MA, Islam A, Butt MA, Hussain T, Khan RU, Bashir S, et al.
    Int J Biol Macromol, 2021 Nov 30;191:872-880.
    PMID: 34571131 DOI: 10.1016/j.ijbiomac.2021.09.131
    Mixed matrix membranes (MMMs) of cellulose acetate/poly(vinylpyrrolidone) (CA/PVP) infused with acid functionalized multiwall carbon nanotubes (f-MWCNTs) were fabricated by an immersion phase separation technique for hemodialysis application. Membranes were characterized using FTIR, water uptake, contact angle, TGA, DMA and SEM analysis. The FTIR was used to confirm the bonding interaction between CA/PVP membrane matrix and f-MWCNTs. Upon addition of f-MWCNTs, TGA thermograms and glass transition temperature indicated improved thermal stability of MMMs. The surface morphological analysis demonstrated revealed uniform distribution of f-MWCNTs and asymmetric membrane structure. The water uptake and contact angle confirmed that hydrophilicity was increased after incorporation of f-MWCNTs. The membranes demonstrated enhancement in water permeate flux, bovine serum albumin (BSA) rejection with the infusion of f-MWCNTs; whereas BSA based anti-fouling analysis using flux recovery ratio test shown up to 8.4% improvement. The urea and creatinine clearance performance of MMMs were evaluated by dialysis experiment. It has been found that f-MWCNTs integrated membranes demonstrated the higher urea and creatinine clearance with increase of 12.6% and 10.5% in comparison to the neat CA/PVP membrane. Thus, the prepared CA/PVP membranes embedded with f-MWCNTs can be employed for wide range of dialysis applications.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  3. Wsoo MA, Razak SIA, Bohari SPM, Shahir S, Salihu R, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Jun 30;181:82-98.
    PMID: 33771547 DOI: 10.1016/j.ijbiomac.2021.03.108
    Vitamin D deficiency is now a global health problem; despite several drug delivery systems for carrying vitamin D due to low bioavailability and loss bioactivity. Developing a new drug delivery system to deliver vitamin D3 is a strong incentive in the current study. Hence, an implantable drug delivery system (IDDS) was developed from the electrospun cellulose acetate (CA) and ε-polycaprolactone (PCL) nanofibrous membrane, in which the core of implants consists of vitamin D3-loaded CA nanofiber (CAVD) and enclosed in a thin layer of the PCL membrane (CAVD/PCL). CA nanofibrous mat loaded with vitamin D3 at the concentrations of 6, 12, and 20% (w/w) of vitamin D3 were produced using electrospinning. The smooth and bead-free fibers with diameters ranged from 324 to 428 nm were obtained. The fiber diameters increased with an increase in vitamin D3 content. The controlled drug release profile was observed over 30-days, which fit with the zero-order model (R2 > 0.96) in the first stage. The mechanical properties of IDDS were improved. Young's modulus and tensile strength of CAVD/PCL (dry) were161 ± 14 and 13.07 ± 2.5 MPa, respectively. CA and PCL nanofibers are non-cytotoxic based on the results of the in-vitro cytotoxicity studies. This study can further broaden in-vivo study and provide a reference for developing a new IDDS to carry vitamin D3 in the future.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  4. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA
    Carbohydr Res, 2020 May;491:107978.
    PMID: 32163784 DOI: 10.1016/j.carres.2020.107978
    Cellulose acetate (CA) is a remarkable biomaterial most extensively used in biomedical applications due to their properties. This review highlighted the synthesis and chemical structure of CA polymer as well as focused on the mechanical, chemical, thermal, biocompatible, and biodegradable properties of electrospun CA nanofibers. These properties are essential in the evaluation of the CA nanofibers and provide information as a reference for the further utilization and improvement of CA nanofibers. Moreover, we have summarized the use of electrospun CA nanofibers in the drug delivery system as a carrier for drugs and classify them according to the drug class, including anti-inflammatory, anticancer, antioxidant, antimicrobial agents, vitamins and amino acids. Our review has been concluded that CA nanofibers cannot wholly be biodegraded within the human body due to the absence of cellulase enzyme but degraded by microorganisms. Hence, the biodegradation of CA nanofibers in vivo has addressed as a critical challenge.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  5. Tan HL, Kai D, Pasbakhsh P, Teow SY, Lim YY, Pushpamalar J
    Colloids Surf B Biointerfaces, 2020 Apr;188:110713.
    PMID: 31884080 DOI: 10.1016/j.colsurfb.2019.110713
    Electrospinning is a common method to prepare nanofiber scaffolds for tissue engineering. One of the common cellulose esters, cellulose acetate butyrate (CAB), has been electrospun into nanofibers and studied. However, the intrinsic hydrophobicity of CAB limits its application in tissue engineering as it retards cell adhesion. In this study, the properties of CAB nanofibers were improved by fabricating the composite nanofibers made of CAB and hydrophilic polyethylene glycol (PEG). Different ratios of CAB to PEG were tested and only the ratio of 2:1 resulted in smooth and bead-free nanofibers. The tensile test results show that CAB/PEG composite nanofibers have 2-fold higher tensile strength than pure CAB nanofibers. The hydrophobicity of the composite nanofibers was also reduced based on the water contact angle analysis. As the hydrophilicity increases, the swelling ability of the composite nanofiber increases by 2-fold with more rapid biodegradation. The biocompatibility of the nanofibers was tested with normal human dermal fibroblasts (NHDF). The cell viability assay results revealed that the nanofibers are non-toxic. In addition to that, CAB/PEG nanofibers have better cell attachment compared to pure CAB nanofibers. Based on this study, CAB/PEG composite nanofibers could potentially be used as a nanofiber scaffold for applications in tissue engineering.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  6. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  7. Shah SA, Sohail M, Minhas MU, Nisar-Ur-Rehman, Khan S, Hussain Z, et al.
    Drug Deliv Transl Res, 2019 Apr;9(2):555-577.
    PMID: 29450805 DOI: 10.1007/s13346-018-0486-8
    Cellulose acetate phthalate-based pH-responsive hydrogel was synthesized for fabrication of polymeric matrix tablets for gastro-protective delivery of loxoprofen sodium. Cellulose acetate phthalate (CAP) was cross-linked with methacrylic acid (MAA) using free radical polymerization technique. Fourier transform infrared (FTIR) spectra confirmed the formation of cross-linked structure of CAP-co-poly(methacrylic acid). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the thermal stability of polymeric networks, and scanning electron microscopy (SEM) and energy-dispersive X-ray spectrum (EDS) images unveiled that the prepared formulations were porous in nature and thus the developed formulations had shown better diffusibility. Swelling and in vitro drug release was performed at various pHs and maximum swelling and release was obtained at pH 7.4, while swelling and release rate was very low at pH 1.2 which confirmed the pH-responsive behavior of CAP-co-poly(MAA). CAP-co-poly(MAA) copolymer prevents the release of loxoprofen sodium into the stomach due to reduced swelling at gastric pH while showing significant swelling and drug release in the colon. Cytotoxicity studies revealed higher biocompatibility of fabricated hydrogel. Acute oral toxicity studies were performed for the evaluation and preliminary screening of safety profile of the developed hydrogels. Matrix tablets were evaluated for release behavior at simulated body pH. The investigations performed for analysis of hydrogels and fabricated matrix tablets indicated the controlled drug release and gastro-protective drug delivery of CAP-co-poly(MAA) hydrogels and pH-sensitive matrix tablets for targeted delivery of gastro-sensitive/irritative agents. Graphical abstract.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  8. Nanthasurasak P, See HH, Zhang M, Guijt RM, Breadmore MC
    Angew Chem Int Ed Engl, 2019 03 18;58(12):3790-3794.
    PMID: 30614157 DOI: 10.1002/anie.201812077
    An electrokinetic platform was developed for extracting small-molecule pharmaceuticals from a dried blood spot. Through the exclusion of liquid reagents and use of low field strength (6 V cm-1 ), the electroextraction of a drug from a dried blood spot, deposited on a polymer inclusion membrane (PIM), could be realised while in transit in the mail. In transit sample preparation provides a potential solution to in situ sample degradation and may accelerate the workflow upon arrival of a patient sample at the analytical facility. The electroextraction method was enabled through our discovery of the use of 15-20 μm thin PIMs as electrophoretic separation medium in absence of liquid reagents. Here, a PIM consisting of cellulose triacetate as polymer base, 2-nitrophenyl octyl ether as plasticizer and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as carrier was used. The PIM, was packaged with two 12 V batteries to supply the separation voltage. A blood spot containing berberine chloride was deposited and dried before the applying the separation potential, allowing for the electroextraction while the packaged device was shipped in internal mail. Upon arrival in the analytical laboratory, the PIM was analysed using a fluorescence microscope with photon multiplier tube, quantifying the berberine extracted away from the sample matrix. This platform represents a new opportunity for processing clinical samples during transport to the laboratory, saving time and manual handling to accelerate the time to result.
    Matched MeSH terms: Cellulose/analogs & derivatives
  9. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM
    Int J Biol Macromol, 2019 Feb 01;122:562-571.
    PMID: 30365990 DOI: 10.1016/j.ijbiomac.2018.10.156
    This study is focusing to develop a porous biocompatible scaffold using hydroxyethyl cellulose (HEC) and poly (vinyl alcohol) (PVA) with improved cellular adhesion profiles and stability. The combination of HEC and PVA were synthesized using freeze-drying technique and characterized using SEM, ATR-FTIR, TGA, DSC, and UTM. Pore size of HEC/PVA (2-40 μm) scaffolds showed diameter in a range of both pure HEC (2-20 μm) and PVA (14-70 μm). All scaffolds revealed high porosity above 85%. The water uptake of HEC was controlled by PVA cooperation in the polymer matrix. After 7 days, all blended scaffolds showed low degradation rate with the increased of PVA composition. The FTIR and TGA results explicit possible chemical interactions and mass loss of blended scaffolds, respectively. The Tg values of DSC curved in range of HEC and PVA represented the miscibility of HEC/PVA blend polymers. Higher Young's modulus was obtained with the increasing of HEC value. Cell-scaffolds interaction demonstrated that human fibroblast (hFB) cells adhered to polymer matrices with better cell proliferation observed after 7 days of cultivation. These results suggested that biocompatible of HEC/PVA scaffolds fabricated by freeze-drying method might be suitable for skin tissue engineering applications.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  10. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Cellulose/analogs & derivatives
  11. Abbas K, Amin M, Hussain MA, Sher M, Bukhari SNA, Jantan I, et al.
    Int J Biol Macromol, 2017 Oct;103:441-450.
    PMID: 28526350 DOI: 10.1016/j.ijbiomac.2017.05.061
    This deals with fabrication of macromolecular prodrugs (MPDs) of salicylic acid (SA) and aspirin (ASP) based on a hydrophilic cellulose ether, hydroxyethyl cellulose (HEC). Degrees of substitution (DS) of SA and ASP per HEC repeating unit (HEC-RU) were achieved ranging from 0.60 to 2.18 and 0.53 to1.50, respectively. The amphiphilic HEC-SA conjugate 2 assembled into nanowire-like structures, while HEC-ASP conjugate 6 formed nanoparticles (diameter 300-00nm) at a water/DMSO interface. After oral administration in rabbit models, conjugates 2 and 6 showed plasma half-life of 6.96 and 7.01h with maximum plasma concentration (Cmax) of 15.27 and 23.01μg L-1, respectively, and each reached peak plasma concentration (tmax) at 4.0h. Immunomodulatory assays (interleukin 6 and tumor necrosis factor-α values) revealed that anti-inflammatory properties of SA and ASP were unaltered in conjugates. Swelling inhibition of 61 and 71% was observed for conjugates 2 and 6, respectively, in a carrageenan induced paw edema test. Cytotoxic profiling (MTT assay) showed that conjugates were safe for administration in the concentration range of 2-10mM up to 24h. Thermal analyses revealed that Tdm values of SA and ASP conjugates were increased by 99 and 154̊C, respectively, indicating extraordinary thermal stability imparted to drugs after MPD formation.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  12. Khan FU, Asimullah, Khan SB, Kamal T, Asiri AM, Khan IU, et al.
    Int J Biol Macromol, 2017 Sep;102:868-877.
    PMID: 28428128 DOI: 10.1016/j.ijbiomac.2017.04.062
    A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu0-Ag0/CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH4. Additionally, the Cu0-Ag0/CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  13. Gan S, Piao SH, Choi HJ, Zakaria S, Chia CH
    Carbohydr Polym, 2016 Feb 10;137:693-700.
    PMID: 26686181 DOI: 10.1016/j.carbpol.2015.11.035
    Cellulose carbamate (CC) was produced from kenaf core pulp (KCP) via a microwave reactor-assisted method. The formation of CC was confirmed by Fourier transform infrared spectroscopy and nitrogen content analysis. The degree of substitution, zeta potential and size distribution of CC were also determined. The CC was characterized with scanning electron microscopy, X-ray diffraction and thermogravimetry analysis. The CC particles were then dispersed in silicone oil to prepare CC-based anhydrous electric stimuli-responsive electrorheological (ER) fluids. Rhelogical measurement was carried out using rotational rheometer with a high voltage generator in both steady and oscillatory shear modes to examine the effect of electric field strength on the ER characteristics. The results showed that the increase in electric field strength has enhanced the ER properties of CC-based ER fluid due to the chain formation induced by electric polarization among the particles.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  14. Wan Daud WR, Djuned FM
    Carbohydr Polym, 2015 Nov 5;132:252-60.
    PMID: 26256348 DOI: 10.1016/j.carbpol.2015.06.011
    Acetone soluble oil palm empty fruit bunch cellulose acetate (OPEFB-CA) of DS 2.52 has been successfully synthesized in a one-step heterogeneous acetylation of OPEFB cellulose without necessitating the hydrolysis stage. This has only been made possible by the mathematical modeling of the acetylation process by manipulating the variables of reaction time and acetic anhydride/cellulose ratio (RR). The obtained model was verified by experimental data with an error of less than 2.5%. NMR analysis showed that the distribution of the acetyl moiety among the three OH groups of cellulose indicates a preference at the C6 position, followed by C3 and C2. XRD revealed that OPEFB-CA is highly amorphous with a degree of crystallinity estimated to be ca. 6.41% as determined from DSC. The OPEFB-CA films exhibited good mechanical properties being their tensile strength and Young's modulus higher than those of the commercial CA.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  15. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  16. Mamat NA, See HH
    J Chromatogr A, 2015 Aug 7;1406:34-9.
    PMID: 26141273 DOI: 10.1016/j.chroma.2015.06.020
    In this work, a new variation of the electromembrane extraction (EME) approach employing a hollow polymer inclusion membrane (HPIM) was developed. In this method, a HPIM was prepared by casting a solution of the desired proportions of cellulose acetate (CTA), tris(2-ethylhexyl)phosphate (TEHP) and di-(2-ethylhexyl)phosphoric acid (D2EHPA) in dichloromethane on glass capillary tubing. Three basic drugs namely amphetamine, methamphetamine, and 3,4-methylenedioxy-N-methylamphetamine (MDMA) were selected as model analytes to evaluate the extraction performance of this new approach. The drugs were extracted from human plasma samples, through a 20μm thickness HPIM, to an aqueous acceptor solution inside the lumen of the hollow membrane. Parameters affecting the extraction efficiency were investigated in detail. Under the optimized conditions, enrichment factors in the range of 97-103-fold were obtained from 3mL of sample solution with a 10min extraction time and an applied voltage of 300V across the HPIM. The detection limits of the method for the three drugs were in the range of 1.0-2.5ng/mL (at a signal/noise ratio of three), with relative standard deviations of between 6.4% and 7.9%. When the method was applied to spiked plasma samples, the relative recoveries ranged from 99.2% to 100.8%. Enrichment factors of 103, 99 and 97 were obtained for amphetamine, methamphetamine, and MDMA, respectively. A comparison was also made between the newly developed approach and EME using supported liquid membranes (SLM) as well as standard sample preparation methods (liquid-liquid extraction) used by the Toxicology Unit, Department of Chemistry, Malaysia.
    Matched MeSH terms: Cellulose/analogs & derivatives
  17. Zulkifli FH, Jahir Hussain FS, Abdull Rasad MS, Mohd Yusoff M
    J Biomater Appl, 2015 Feb;29(7):1014-27.
    PMID: 25186524 DOI: 10.1177/0885328214549818
    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.
    Matched MeSH terms: Cellulose/analogs & derivatives
  18. Hussain MA, Shah A, Jantan I, Shah MR, Tahir MN, Ahmad R, et al.
    Int J Nanomedicine, 2015;10:2079-88.
    PMID: 25844038 DOI: 10.2147/IJN.S75874
    Polysaccharides are attracting the vigil eye of researchers in order to design the green synthesis of silver nanoparticles (Ag NPs) of diverse size, shape, and application. We report an environmentally friendly method to synthesize Ag NPs where no physical reaction conditions were employed. Hydroxypropylcellulose (HPC) was used as a template nanoreactor, stabilizer, and capping agent to obtain Ag NPs. Different concentrations of AgNO3 solutions (50 mmol, 75 mmol, and 100 mmol) were mixed with a concentrated aqueous solution of HPC and the progress of the reaction was monitored by noting color changes of the reaction mixture at different reaction times for up to 24 hours. Characteristic ultraviolet-visible spectroscopy (UV/Vis) absorption bands of Ag NPs were observed in the range of 388-452 nm. The morphology of the Ag NPs was studied by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy. The TEM images confirmed that the size of the Ag NPs was in the range of 25-55 nm. Powder X-ray diffraction studies showed that the crystal phase of the Ag NPs was face-centered cubic. The as-prepared Ag NPs were found to be stable, and no changes in size and morphology were observed after storage in HPC thin films over 1 year, as indicated by UV/Vis spectra. So, the present work furnishes a green and economical strategy for the synthesis and storage of stable Ag NPs. As-synthesized Ag NPs showed significant antimicrobial activity against different bacterial (Escherichia coli, Staphylococcus epidermidis, S. aureus, Bacillus subtilis, Pseudomonas aeruginosa) and fungal strains (Actinomycetes and Aspergillus niger).
    Matched MeSH terms: Cellulose/analogs & derivatives*
  19. Zulkifli FH, Hussain FSJ, Rasad MSBA, Mohd Yusoff M
    Carbohydr Polym, 2014 Dec 19;114:238-245.
    PMID: 25263887 DOI: 10.1016/j.carbpol.2014.08.019
    In this study, a novel fibrous membrane of hydroxyethyl cellulose (HEC)/poly(vinyl alcohol) blend was successfully fabricated by electrospinning technique and characterized. The concentration of HEC (5%) with PVA (15%) was optimized, blended in different ratios (30-50%) and electrospun to get smooth nanofibers. Nanofibrous membranes were made water insoluble by chemically cross-linking by glutaraldehyde and used as scaffolds for the skin tissue engineering. The microstructure, morphology, mechanical and thermal properties of the blended HEC/PVA nanofibrous scaffolds were characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning colorimetry, universal testing machine and thermogravimetric analysis. Cytotoxicity studies on these nanofibrous scaffolds were carried out using human melanoma cells by the MTT assays. The cells were able to attach and spread in the nanofibrous scaffolds as shown by the SEM images. These preliminary results show that these nanofibrous scaffolds that supports cell adhesion and proliferation is promising for skin tissue engineering.
    Matched MeSH terms: Cellulose/analogs & derivatives*
  20. Abeer MM, Amin MC, Lazim AM, Pandey M, Martin C
    Carbohydr Polym, 2014 Sep 22;110:505-12.
    PMID: 24906785 DOI: 10.1016/j.carbpol.2014.04.052
    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.
    Matched MeSH terms: Cellulose/analogs & derivatives*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links