The present study deals with the functional severity of a coronary artery stenosis assessed by the fractional flow reserve (FFR). The effects of different geometrical shapes of lesion on the diagnostic parameters are unknown. In this study, 3D computational simulation of blood flow in three different geometrical shapes of stenosis (triangular, elliptical, and trapezium) is considered in steady and transient conditions for 70% (moderate), 80% (intermediate), and 90% (severe) area stenosis (AS). For a given percentage AS, the variation of diagnostic parameters which are derived from pressure drop across the stenosis was found in three different geometrical shapes of stenosis and it was observed that FFR is higher in triangular shape and lower in trapezium shape. The pressure drop coefficient (CDP) was higher in trapezium shape and lower in triangular model whereas the LFC shows opposite trend. From the clinical perspective, the relationship between percentage AS and FFR is linear and inversely related in all the three models. A cut-off value of 0.75 for FFR was observed at 76.5% AS in trapezium model, 79.5% in elliptical model, and 82.7% AS for the triangular shaped model. The misinterpretation of the functional severity of the stenosis is in the region of 76.5%-82.7 % AS from different shapes of stenosis models.
This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.
The current study investigates the curvature effect due to various angles of curvature on the blood flow in human artery. The stenosis is considered to have three sizes 70%, 80% and 90% blockage before the curve section of artery. Numerical study of four different angle of curvature was considered to understand the flow behavior of artery having various curvatures, on the hemodynamics factors that includes drop in arterial pressure, flow velocity as well as wall shear stress. It was found that, the augmentation of the flow resistance due to the curvature increases in presence of stenosis. It was also noted that the wall shear is higher at the outer wall as compared to the inside wall in four models considered. Results showed that both the curvature of artery and size of the stenosis have significant impact. These two factors should be considered by cardiologist to assess the complexity of stenosis.
The current study investigates the effect of multi stenosis on the hemodynamic parameters such as wall pressure, velocity and wall shear stress in the realistic left coronary artery. Patients CT scan image data of normal and diseased left coronary artery was chosen for the reconstruction of 3D coronary artery models. The diseased 3D model of left coronary artery shows a narrowing of more than 70% and 80% of area stenosis (AS) at the left main stem (LMS) and left circumflex (LCX) respectively. The results show that the decrease in pressure was found downstream to the stenosis as compared to the coronary artery without stenosis. The maximum pressure drop was noted across the 80% AS at the left circumflex branch. The recirculation zone was also observed immediate to the stenosis and highest wall shear stress was found across the 80% area stenosis. Our analysis provides an insight into the distribution of wall shear stress and pressure drop, thus improving our understanding on the hemodynamics in realistic coronary artery.
Functional assessment of a coronary artery stenosis severity is generally assessed by fractional flow reserve (FFR), which is calculated from pressure measurements across the stenosis. The purpose of this study is to investigate the effect of porous media of the stenosed arterial wall on this diagnostic parameter. To understand the role of porous media on the diagnostic parameter FFR, a 3D computational simulations of the blood flow in rigid and porous stenotic artery wall models are carried out under steady state and transient conditions for three different percentage area stenoses (AS) corresponding to 70% (moderate), 80% (intermediate), and 90% (severe). Blood was modeled as a non Newtonian fluid. The variations of pressure drop across the stenosis and diagnostic parameter were studied in both models. The FFR decreased in proportion to the increase in the severity of the stenosis. The relationship between the percentage AS and the FFR was non linear and inversely related in both the models. The cut-off value of 0.75 for FFR was observed at 81.89% AS for the rigid artery model whereas 83.61% AS for the porous artery wall model. This study demonstrates that the porous media consideration on the stenotic arterial wall plays a substantial role in defining the cut-off value of FFR. We conclude that the effect of porous media on FFR, could lead to misinterpretation of the functional severity of the stenosis in the region of 81.89 %-83.61% AS.
Congenital coronary artery anomalies are rare, with an incidence of about 0.06-1.3 percent of all patients undergoing cardiac catheterisation. They are commonly asymptomatic, but potentially serious lesions may lead to myocardial ischaemia, infarction and/or sudden cardiac death. The occurrence of a concomitant stenotic lesion is exceedingly rare. We report an 80-year-old man who presented with acute anterior myocardial infarction. Coronary angiography revealed severe proximal left anterior descending (LAD) and arteriovenous malformation (AVM) from the first septal branch of the LAD. The LAD stenosis and the AVM were successfully treated with two Jomed covered stents.