Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Zaw MT, Lin Z
    J Microbiol Immunol Infect, 2017 Oct;50(5):559-564.
    PMID: 28065415 DOI: 10.1016/j.jmii.2016.08.004
    Plasmodium ovale is widely distributed in tropical countries, whereas it has not been reported in the Americas. It is not a problem globally because it is rarely detected by microscopy owing to low parasite density, which is a feature of clinical ovale malaria. P.o. curtisi and P.o. wallikeri are widespread in both Africa and Asia, and were known to be sympatric in many African countries and in southeast Asian countries. Small subunit ribosomal RNA (SSUrRNA) gene, cytochrome b (cytb) gene, and merozoite surface protein-1 (msp-1) gene were initially studied for molecular discrimination of P.o. curtisi and P.o. wallikeri using polymerase chain reaction (PCR) and DNA sequencing. DNA sequences of other genes from P. ovale in Southeast Asia and the southwestern Pacific regions were also targeted to differentiate the two sympatric types. In terms of clinical manifestations, P.o. wallikeri tended to produce higher parasitemia levels and more severe symptoms. To date, there have been a few studies that used the quantitative PCR method for discrimination of the two distinct P. ovale types. Conventional PCR with consequent DNA sequencing is the common method used to differentiate these two types. It is necessary to identify these two types because relapse periodicity, drug susceptibility, and mosquito species preference need to be studied to reduce ovale malaria. In this article, an easier method of molecular-level discrimination of P.o. curtisi and P.o. wallikeri is proposed.
    Matched MeSH terms: Cytochromes b/genetics
  2. Olival KJ, Stiner EO, Perkins SL
    J Parasitol, 2007 Dec;93(6):1538-40.
    PMID: 18314711 DOI: 10.1645/GE-1208.1
    Three species of flying fox (Pteropus hypomelanus, P. vampyrus, and P. lylei) from Malaysia and Vietnam were screened for apicomplexan parasites by thin blood smears and polymerase chain reaction. Only 1 of 16 bats sampled from 3 localities in southeast Asia was found to be infected (P. hypomelanus from Pulau Pangkor, Malaysia). We observed micro- and macrogametocytes, with morphology consistent with Hepatocystis sp. parasites, using light microscopy. Phylogenetic analysis of the cytochrome b gene showed that the parasite from P. hypomelanus groups with 2 published sequences from Hepatocystis spp., including one from Cynopterus brachyotis, another fruit bat in the Pteropodidae.
    Matched MeSH terms: Cytochromes b/genetics
  3. Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB
    PMID: 34077338 DOI: 10.1080/19440049.2021.1925748
    Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
    Matched MeSH terms: Cytochromes b/genetics*
  4. Ahamad MNU, Ali ME, Hossain MAM, Asing A, Sultana S, Jahurul MHA
    PMID: 28748739 DOI: 10.1080/19440049.2017.1359752
    Rabbit meat is receiving increasing attention because it contains a high level of proteins with relatively little fat. On the other hand, squirrel meat is served in upper-class meals in certain countries, so is sold at higher prices. The other side of the coin is rat meat, which has family ties with rabbit and squirrel but poses substantial threats to public health because it is a potential carrier of several zoonotic organisms. Recently, rat meat was mislabelled and sold as lamb after chemical modification. Thus, the chances of rabbit and squirrel meat substitution by rat meat cannot be ruled out. For the first time, a multiplex PCR assay was developed in Malaysia for the discriminatory identification of rat, rabbit and squirrel in the food chain. Rabbit (123 bp), rat (108 bp) and squirrel (243 bp) targets were amplified from ATP6 and cytb genes, along with a eukaryotic internal control (141bp). The products were sequenced and cross-tested against 22 species. A total of 81 reference samples and 72 meatball specimens were screened to validate the assay. Analyte stability was evaluated through boiling, autoclaving and micro-oven cooking. The tested lower limits of detection were 0.01 ng DNA for pure meat and 0.1% for meatballs.
    Matched MeSH terms: Cytochromes b/genetics
  5. Ivanova K, Zehtindjiev P, Mariaux J, Georgiev BB
    Infect Genet Evol, 2015 Apr;31:33-9.
    PMID: 25577987 DOI: 10.1016/j.meegid.2015.01.004
    The knowledge of the diversity of haemosporidian parasites is of primary importance as their representatives include agents of bird malaria. We investigated the occurrence of Haemoproteus spp. and Plasmodium spp. in bird populations from a single locality in the State of Selangor, Peninsular Malaysia, and report on the parasite prevalence of the two genera. A combination of methods (molecular and morphological) was used for detecting these parasites. Seventy-nine bird individuals were caught using mist-nets in July and August 2010 at Gombak Field Station of the University of Malaya, Kuala Lumpur. In total, 23 birds were identified as positive for Haemoproteus or Plasmodium infection and one individual was recognized as carrying mixed infection. The total prevalence of haemosporidians in the collected samples was 30.3%. Infections with parasites of the genus Haemoproteus were predominant compared to those of the genus Plasmodium. In total, 10 new cyt b lineages of Haemoproteus spp. and 3 new cyt b lineages of Plasmodium spp. were recorded in this study. From all recorded haemosporidian lineages (16 in total), 3 were known from previous studies - hCOLL2, hYWT2 and pNILSUN1. Two of them are linked with their corresponding morphospecies - Haemoproteus pallidus (COLL2) and Haemoproteus motacillae (YWT2). The morphological analysis in the present study confirmed the results obtained by the PCR method relative to prevalence, with 25.3% total prevalence of Haemoproteus and Plasmodium parasites. The intensities of infection varied between 0.01% and 19%. Most infections were light, with intensities below 0.1%. The present study is the first molecular survey of the protozoan blood parasites of the order Haemosporida recorded in Malaysia.
    Matched MeSH terms: Cytochromes b/genetics
  6. Low VL, Tan TK, Lim PE, Domingues LN, Tay ST, Lim YA, et al.
    Vet Parasitol, 2014 Aug 29;204(3-4):439-42.
    PMID: 24912955 DOI: 10.1016/j.vetpar.2014.05.036
    A multilocus sequence analysis using mitochondria-encoded cytochrome c oxidase subunit I (COI), cytochrome B (CytB), NADH dehydrogenase subunit 5 (ND5); nuclear encoded 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) genes was performed to determine the levels of genetic variation between the closely related species Haematobia irritans Linnaeus and Haematobia exigua de Meijere. Among these five genes, ND5 and CytB genes were found to be more variable and informative in resolving the interspecific relationships of both species. In contrast, the COI gene was more valuable in inferring the intraspecific relationships. The ribosomal 18S and 28S sequences of H. irritans and H. exigua were highly conserved with limited intra- and inter-specific variation. Molecular evidence presented in this study demonstrated that both flies are genetically distinct and could be differentiated based on sequence analysis of mitochondrial genes.
    Matched MeSH terms: Cytochromes b/genetics
  7. Mohd-Shamsudin MI, Fard MZ, Mather PB, Suleiman Z, Hassan R, Othman RY, et al.
    Gene, 2011 Dec 15;490(1-2):47-53.
    PMID: 21945689 DOI: 10.1016/j.gene.2011.08.025
    Morphological identification of fish taxa can sometimes prove difficult because phenotypic variation is either being affected by environmental factors, phenotypic characters are highly conserved or marker selection has been inappropriate. DNA based markers especially neutral mitochondrial DNA (mtDNA) have been used widely in recent times to provide better resolution of systematic relationships among vertebrate taxa. The Asian Arowana (Scleropages formosus) is a high value ornamental fish belonging to the family Osteoglossidae with a number of different colour variants distributed geographically across different locations around Southeast Asia. Systematic relationships among colour variants still remain unresolved. Partial sequences of the Cytochrome B (Cyt B) and DNA barcoding gene, Cytochrome C Oxidase I (COI) were used here to assess genetic relationships among colour variants and as a tool for molecular identification for differentiating among colour variants in this species. Results of the study show that in general, colour pattern shows no relationship with extent of COI or Cyt B mtDNA differentiation and so cannot be used to identify taxa. Partial sequences of the mtDNA genes were sufficient however, to identify S. formosus from a closely related species within the order Osteoglossidae.
    Matched MeSH terms: Cytochromes b/genetics
  8. Rahim MH, Ismail P, Alias R, Muhammad N, Mat Jais AM
    Gene, 2012 Feb 15;494(1):1-10.
    PMID: 22197656 DOI: 10.1016/j.gene.2011.12.015
    Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (F(ST)=0.37566, P=0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (d(A)) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP).
    Matched MeSH terms: Cytochromes b/genetics*
  9. Ang KC, Leow JW, Yeap WK, Hood S, Mahani MC, Md-Zain BM
    Genet. Mol. Res., 2011;10(2):640-9.
    PMID: 21491374 DOI: 10.4238/vol10-2gmr1011
    Malaysia remains as a crossroad of different cultures and peoples, and it has long been recognized that studying its population history can provide crucial insight into the prehistory of Southeast Asia as a whole. The earliest inhabitants were the Orang Asli in Peninsular Malaysia and the indigenous groups in Sabah and Sarawak. Although they were the earliest migrants in this region, these tribes are divided geographically by the South China Sea. We analyzed DNA sequences of 18 Orang Asli using mitochondrial DNA extracted from blood samples, each representing one sub-tribe, and from five Sarawakian Iban. Mitochondrial DNA was extracted from hair samples in order to examine relationships with the main ethnic groups in Malaysia. The D-loop region and cytochrome b genes were used as the candidate loci. Phylogenetic relationships were investigated using maximum parsimony and neighbor joining algorithms, and each tree was subjected to bootstrap analysis with 1000 replicates. Analyses of the HVS I region showed that the Iban are not a distinct group from the Orang Asli; they form a sub-clade within the Orang Asli. Based on the cytochrome b gene, the Iban clustered with the Orang Asli in the same clade. We found evidence for considerable gene flow between Orang Asli and Iban. We concluded that the Orang Asli, Iban and the main ethnic groups of Malaysia are probably derived from a common ancestor. This is in agreement with a single-route migration theory, but it does not dismiss a two-route migration theory.
    Matched MeSH terms: Cytochromes b/genetics
  10. Lim HC, Sheldon FH
    Mol Ecol, 2011 Aug;20(16):3414-38.
    PMID: 21777318 DOI: 10.1111/j.1365-294X.2011.05190.x
    Sundaland has a dynamic geographic history because its landmasses were periodically interconnected when sea levels fell during glacial periods. Superimposed on this geographic dynamism were environmental changes related to climatic oscillations. To investigate how tropical taxa responded to such changes, we studied the divergence and demographic history of two co-distributed rainforest passerine species, Arachnothera longirostra and Malacocincla malaccensis. We sampled birds primarily from Borneo and the Malay Peninsula, which straddle the now-submerged Sunda shelf, and analysed multilocus DNA data with a variety of coalescent and gene genealogy methods. Cross-shelf divergence in both species occurred well before the last glacial maximum, i.e., before the most recent land connection. However, post-divergence gene flow occurred, and it was more pronounced in A. longirostra (a highly vagile nectarivore/insectivore) than in M. malaccensis (an understory insectivore). Despite current habitat continuity on Borneo, the population of M. malaccensis in northeastern Borneo is substantially divergent from that on the rest of the island. The NE population experienced dramatic demographic fluctuations, probably because of competition with the other population, which expanded from western Borneo after the mid-Pleistocene. In contrast, the Borneo population of A. longirostra has little structure and appears to have experienced demographic expansion 16 kya, long after it had diverged from the Malay Peninsula population (630-690 kya). Malay Peninsula populations of both species have remained relatively stable. Overall, the most recent glacial period was not the chief determinant of the evolutionary dynamics of our study species, and in this respect, they are different from temperate species.
    Matched MeSH terms: Cytochromes b/genetics
  11. Rosli MK, Zamzuriada AS, Syed-Shabthar SM, Mahani MC, Abas-Mazni O, Md-Zain BM
    Genet. Mol. Res., 2011;10(4):2554-68.
    PMID: 22033937 DOI: 10.4238/2011.October.19.2
    PCR has been extensively used for amplification of DNA sequences. We conducted a study to obtain the best amplification conditions for cytochrome b (Cyt b), cytochrome c oxidase I (COI) and 12S rRNA (12S) gene fragments of Malayan gaur mtDNA. DNA from seven Malayan gaur samples were extracted for PCR amplification. Various trials and combinations were tested to determine the best conditions of PCR mixture and profile to obtain the best PCR products for sequencing purposes. Four selected target factors for enhancing PCR, annealing temperature, concentration of primer pairs, amount of Taq polymerase, and PCR cycle duration, were optimized by keeping the amount of DNA template (50 ng/μL) and concentration of PCR buffer (1X), MgCl(2) (2.5 mM) and dNTP mixture (200 μM each) constant. All genes were successfully amplified, giving the correct fragment lengths, as assigned for both forward and reverse primers. The optimal conditions were determined to be: 0.1 μM primers for Cyt b and COI, 0.3 μM primers for 12S, 1 U Taq polymerase for all genes, 30 s of both denaturation and annealing cycles for Cyt b, 1 min of both stages for 12S and COI and annealing temperature of 58.4 ° C for Cyt b, 56.1 ° C for 12S and 51.3 ° C for COI. PCR products obtained under these conditions produced excellent DNA sequences.
    Matched MeSH terms: Cytochromes b/genetics*
  12. Djong TH, Matsui M, Kuramoto M, Belabut DM, Sen YH, Nishioka M, et al.
    Zoolog Sci, 2007 Dec;24(12):1197-212.
    PMID: 18271636 DOI: 10.2108/zsj.24.1197
    In order to elucidate the taxonomic status of the Fejervarya limnocharis complex relative to Malaysia and Japan populations, morphological observations and molecular phylogenetic analysis were carried out using three populations from Indonesia (type locality), Malaysia, and Japan. In addition, we conducted histological and spermatogenic observations using hybrids among these populations. Principal component and cluster analyses demonstrated that these populations could be clearly separated from one another. Abnormal testes were found in the hybrids between the Japan and Indonesia populations and between the Japan and Malaysia populations, but testes of the controls and hybrids between the Malaysia and Indonesia populations were quite normal. The mean number of univalents per cell was 5.42, 4.58, and 0.20 in hybrids between the Indonesia and Japan populations, Malaysia and Japan populations, and Indonesia and Malaysia populations, respectively. Sequence divergences in 16S rRNA and Cyt b genes were 0-0.4% (xbar=0.2%) and 0.3-1.5% (xbar=1.0%), respectively, between the Malaysia and Indonesia populations, and 2.4-2.6% (xbar=2.5%) and 11.0-12.0% (xbar=11.5%) between the Japan population and F. limnocharis complex, including the Malaysia and Indonesia populations and F. multistriata from China. This study indicated that the Malaysia population and F. multistriata from China should be designated as a subspecies of topotypic F. limnocharis, and that the Japan population should be regarded as a distinct species.
    Matched MeSH terms: Cytochromes b/genetics*
  13. Yong HS, Eamsobhana P, Song SL, Prasartvit A, Lim PE
    Acta Trop, 2015 Aug;148:66-71.
    PMID: 25930187 DOI: 10.1016/j.actatropica.2015.04.020
    Angiostrongylus cantonensis is an important emerging zoonotic parasite causing human eosinophilic meningitis (or meningoencephalitis) in many parts of the world. To-date there is only a single study using mitochondrial cytochrome b (CYTB) gene to determine its genetic structure in eight geographical localities in Thailand. The present study examined the molecular phylogeography of this rat lungworm and its phylogenetic relationship with congeners using CYTB gene marker. A total of 15 CYTB haplotypes was found in 37 sequences from 14 geographical localities (covering north, west, east, central and south regions) in Thailand. These CYTB haplotypes were distinct from those of A. cantonensis for China and Hawaii. In Thailand, some CYTB haplotypes appeared to be confined to specific geographical localities. The partial CYTB DNA nucleotide sequences separated unequivocally the A. cantonensis isolates of Thailand, China and Hawaii as well as the congeners Angiostrongylus malaysiensis, A. costaricensis and Angiostrongylus vasorum, with A. malaysiensis grouped with A. cantonensis and A. costaricensis grouped with A. vasorum. Likewise the congeners of Metastrongylus and Onchocerca genera could also be clearly differentiated. The present study added two new definitive hosts (Bandicota savilei and Rattus losea) and three new localities (Mae Hong Son in the north, Tak in the west, and Phang Nga in the south) for A. malaysiensis in Thailand, indicating its wide occurrence in the country. Three CYTB haplotypes were found in the Thailand samples of A. malaysiensis. In addition to differentiation of congeners, CYTB gene marker could be used for determining the genetic diversity of a given population/taxon.
    Matched MeSH terms: Cytochromes b/genetics*
  14. Yu D, Zhang J, Li P, Zheng R, Shao C
    PLoS One, 2015;10(4):e0124825.
    PMID: 25875761 DOI: 10.1371/journal.pone.0124825
    he Chinese tiger frog Hoplobatrachus rugulosus is widely distributed in southern China, Malaysia, Myanmar, Thailand, and Vietnam. It is listed in Appendix II of CITES as the only Class II nationally-protected frog in China. The bred tiger frog known as the Thailand tiger frog, is also identified as H. rugulosus. Our analysis of the Cyt b gene showed high genetic divergence (13.8%) between wild and bred samples of tiger frog. Unexpected genetic divergence of the complete mt genome (14.0%) was also observed between wild and bred samples of tiger frog. Yet, the nuclear genes (NCX1, Rag1, Rhod, Tyr) showed little divergence between them. Despite this and their very similar morphology, the features of the mitochondrial genome including genetic divergence of other genes, different three-dimensional structures of ND5 proteins, and gene rearrangements indicate that H. rugulosus may be a cryptic species complex. Using Bayesian inference, maximum likelihood, and maximum parsimony analyses, Hoplobatrachus was resolved as a sister clade to Euphlyctis, and H. rugulosus (BT) as a sister clade to H. rugulosus (WT). We suggest that we should prevent Thailand tiger frogs (bred type) from escaping into wild environments lest they produce hybrids with Chinese tiger frogs (wild type).
    Matched MeSH terms: Cytochromes b/genetics*
  15. Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, et al.
    Acta Trop, 2020 Dec;212:105719.
    PMID: 32976841 DOI: 10.1016/j.actatropica.2020.105719
    Village chicken production, a traditional, small-scale, and extensive backyard poultry industry, has been profitable for local farmers in Myanmar. However, there is scanty information available concerning the infection of these chickens with avian pathogens, including haemoprotozoan parasites. In the present study, we provide the first report of microscopic detection and molecular identification of Leucocytozoon and Plasmodium parasites from seven different areas of Myanmar. Leucocytozoon gametocytes were detected in 17.6% (81/461) of the blood smears from village chickens. The nested polymerase chain reaction (PCR) for targeting Leucocytozoon mitochondrial cytochrome b (cyt b) genes had a 17.6% positive rate. Although the positive rate of nested PCR targeting Plasmodium/Haemoproteus cyt b was 34.3%, the PCR protocol was observed to possibly amplify DNA of a certain species of Leucocytozoon. There were no obvious clinical signs in the infected birds. Statistical analysis of the microscopic detection and PCR detection rates using the age and sex of birds as internal factors revealed that the statistical significances differed according to the study area. The sequencing of 32 PCR products obtained from each study area revealed infection by Leucocytozoon caulleryi in three birds, Leucocytozoon sabrazesi in two birds, Leucocytozoon schoutedeni in two birds, Leucocytozoon sp. in eighteen birds, and Plasmodium juxtanucleare in seven birds; however, Haemoproteus infection was not detected. While L. sabrazesi was detected in chickens from the central region of Myanmar, the other haemosporidians were detected in those from different areas. In the haplotype analysis, we detected 17 haemosporidian cyt b haplotypes, including two for L. caulleryi, one for L. sabrazesi, two for L. schoutedeni, nine for Leucocytozoon sp., and three for P. juxtanucleare. Phylogenetic analysis of the cyt b haplotypes revealed a considerably close genetic relationship among chicken haemosporidians detected in Myanmar, Thailand, and Malaysia. These results indicate that well-recognized widespread species of chicken Leucocytozoon and Plasmodium are distributed nationwide in Myanmar, providing new insights into the ecosystem and control strategies of haemosporidian parasites in domesticated chickens in Myanmar.
    Matched MeSH terms: Cytochromes b/genetics
  16. Ali ME, Hashim U, Mustafa S, Che Man YB, Dhahi TS, Kashif M, et al.
    Meat Sci, 2012 Aug;91(4):454-9.
    PMID: 22444666 DOI: 10.1016/j.meatsci.2012.02.031
    A test for assessing pork adulteration in meatballs, using TaqMan probe real-time polymerase chain reaction, was developed. The assay combined porcine-specific primers and TaqMan probe for the detection of a 109 bp fragment of porcine cytochrome b gene. Specificity test with 10 ng DNA of eleven different species yielded a threshold cycle (Ct) of 15.5 ± 0.20 for the pork and negative results for the others. Analysis of beef meatballs with spiked pork showed the assay can determine 100-0.01% contaminated pork with 102% PCR efficiency, high linear regression (r(2) = 0.994) and ≤ 6% relative errors. Residuals analysis revealed a high precision in all determinations. Random analysis of commercial meatballs from pork, beef, chicken, mutton and goat, yielded a Ct between 15.89 ± 0.16 and 16.37 ± 0.22 from pork meatballs and negative results from the others, showing the suitability of the assay to determine pork in commercial meatballs with a high accuracy and precision.
    Matched MeSH terms: Cytochromes b/genetics*
  17. Rahman MM, Ali ME, Hamid SB, Mustafa S, Hashim U, Hanapi UK
    Meat Sci, 2014 Aug;97(4):404-9.
    PMID: 24769096 DOI: 10.1016/j.meatsci.2014.03.011
    A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods.
    Matched MeSH terms: Cytochromes b/genetics*
  18. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Cytochromes b/genetics
  19. Jamaludin NA, Mohd-Arshaad W, Mohd Akib NA, Zainal Abidin DH, Nghia NV, Nor SM
    PMID: 32744461 DOI: 10.1080/24701394.2020.1799996
    The Japanese scad Decapterus maruadsi (Carangidae) is an economically important marine species in Asia but its exploitation shows signs of overfishing. To document its stock structure, a population genetic and phylogeographic study of several populations of this species from the central part of the Indo-West Pacific region was conducted using the mitochondrial cytochrome b gene. Genetic homogeneity within the Sundaland region's population, including Rosario (the Philippines) and Ranong (Andaman Sea) populations was revealed with low nucleotide diversity (π = 0.001-0.003) but high haplotype diversity (h = 0.503-0.822). In contrast, a clear genetic structure was observed between this group and the northern Vietnam populations as revealed by FST, AMOVA and SAMOVA, while the central Vietnam population of Khanh Hoa is an admixed group between the two differentiated regional populations. The neutrality and mismatch distribution analyses supported a demographic expansion of D. maruadsi in between last Pleistocene to early Holocene period which influenced present day distribution pattern. Contemporary factors such as oceanic currents and different life history traits are also believed to play significant roles in the observed population structure and biogeographical pattern. Based on these results, recommendations on how stocks of the Japanese scad should be managed are offered.
    Matched MeSH terms: Cytochromes b/genetics*
  20. Yap FC, Yan YJ, Loon KT, Zhen JL, Kamau NW, Kumaran JV
    Anim Biotechnol, 2010 Oct;21(4):226-40.
    PMID: 20967642 DOI: 10.1080/10495398.2010.506334
    The present investigation was carried out in an attempt to study the phylogenetic analysis of different breeds of domestic chickens in Peninsular Malaysia inferred from partial cytochrome b gene information and random amplified polymorphic DNA (RAPD) markers. Phylogenetic analysis using both neighbor-joining (NJ) and maximum parsimony (MP) methods produced three clusters that encompassed Type-I village chickens, the red jungle fowl subspecies and the Japanese Chunky broilers. The phylogenetic analysis also revealed that majority of the Malaysian commercial chickens were randomly assembled with the Type-II village chickens. In RAPD assay, phylogenetic analysis using neighbor-joining produced six clusters that were completely distinguished based on the locality of chickens. High levels of genetic variations were observed among the village chickens, the commercial broilers, and between the commercial broilers and layer chickens. In this study, it was found that Type-I village chickens could be distinguished from the commercial chickens and Type-II village chickens at the position of the 27th nucleotide of the 351 bp cytochrome b gene. This study also revealed that RAPD markers were unable to differentiate the type of chickens, but it showed the effectiveness of RAPD in evaluating the genetic variation and the genetic relationships between chicken lines and populations.
    Matched MeSH terms: Cytochromes b/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links