Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Salahshourifar I, Wan Sulaiman WA, Halim AS, Zilfalil BA
    Eur J Med Genet, 2012 Jun;55(6-7):389-93.
    PMID: 22440537 DOI: 10.1016/j.ejmg.2012.02.006
    Non-syndromic oral clefts share the main clinical features of Van der Woude Syndrome (VWS), with the exception of the lower lip pit. Thus, about 15% of VWS cases are indistinguishable from cases with non-syndromic oral clefts. IRF6 mutations are the major cause of VWS; however, variants in this gene show strong association with non-syndromic oral clefts, with a higher increased risk among cases with cleft lip only (CLO). A total of 39 individuals, including 16 patients with CLO and 23 patients with a family history of cleft, were examined for IRF6 mutations in the present study. Seven variants, including five known (c.-75-4 A>; G, c.-73T>; C, c.459G>; T 5, c.820G>; A, and c.1060 + 37C>; T) and two novel (c.-75-23G>; C and c.1380G>; T), were found. Both novel variants were inherited from non-affected parents and we did not find also in the 120 control chromosomes. In silico analysis revealed that both c.1380G>; T and c.-75-23G>; C variants may disrupts a putative exonic splicing enhancer and intronic splicing binding site for SC35, respectively. Taken together, the presence of deleterious IRF6 variants in patients with non-syndromic oral clefts could be most likely an evidence for VWS. While, IRF6 variants could, at best, contribute to clefting as part of a complex inheritance pattern, with both additional genes and environmental factors having a role.
    Matched MeSH terms: DNA Mutational Analysis
  2. Sasongko TH, Gunadi, Yusoff S, Atif AB, Fatemeh H, Rani A, et al.
    Brain Dev, 2010 May;32(5):385-9.
    PMID: 19664890 DOI: 10.1016/j.braindev.2009.06.008
    The majority of spinal muscular atrophy (SMA) patients showed homozygous deletion or other mutations of SMN1. However, the genetic etiology of a significant number of SMA patients has not been clarified. Recently, mutation in the gene underlying cat SMA, limb expression 1 (LIX1), has been reported. Similarity in clinical and pathological features of cat and human SMA may give an insight into possible similarity of the genetic etiology.
    Matched MeSH terms: DNA Mutational Analysis
  3. Aishah ZS, Khairi MD, Normastura AR, Zafarina Z, Zilfalil BA
    J Laryngol Otol, 2008 Dec;122(12):1284-8.
    PMID: 18353197 DOI: 10.1017/S0022215108002041
    To determine the frequency and type of gap junction protein beta-2 gene mutations in Malay patients with autosomal recessive, non-syndromic hearing loss.
    Matched MeSH terms: DNA Mutational Analysis/methods
  4. Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, et al.
    Brain Dev, 2009 Jan;31(1):42-5.
    PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012
    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
    Matched MeSH terms: DNA Mutational Analysis/methods
  5. Lama R, Yusof W, Shrestha TR, Hanafi S, Bhattarai M, Hassan R, et al.
    Hematol Oncol Stem Cell Ther, 2022 Mar 01;15(1):279-284.
    PMID: 33592169 DOI: 10.1016/j.hemonc.2021.01.004
    BACKGROUND: Beta-thalassemia is a genetic disorder that is inherited in an autosomal recessive pattern. This genetic disease leads to a defective beta-globin hemoglobin chain causing partial or complete beta-globin chain synthesis loss. Beta-thalassemia major patients need a continuous blood transfusion and iron chelation to maintain the normal homeostasis of red blood cells (RBCs) and other systems in the body. Patients also require treatment procedures that are costly and tedious, resulting in a serious health burden for developing nations such as Nepal.

    METHODS: A total of 61 individuals clinically diagnosed to have thalassemia were genotyped with multiplex amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Twenty-one major mutations were investigated using allele-specific primers grouped into six different panels.

    RESULTS: The most common mutations found (23%) were IVS 1-5 (G-C) and Cd 26 (G-A) (HbE), followed by 619 deletion, Cd 8/9 (+G), Cd 16 (-C), Cd 41/42 (-TTCT), IVS 1-1 (G-T), Cd 19 (A-G), and Cd 17 (A-T) at 20%, 12%, 8%, 6%, 4%, 3%, and 1%, respectively.

    CONCLUSION: The results of this study revealed that Nepal's mutational profile is comparable to that of its neighboring countries, such as India and Myanmar. This study also showed that thalassemia could be detected across 17 Nepal's ethnic groups, especially those whose ancestors originated from India and Central Asia.

    Matched MeSH terms: DNA Mutational Analysis/methods
  6. Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, et al.
    Asian Pac J Cancer Prev, 2019 06 01;20(6):1749-1755.
    PMID: 31244296 DOI: 10.31557/APJCP.2019.20.6.1749
    Objective: The most frequent acquired molecular abnormalities and important prognostic indicators in patients
    with Acute Myeloid Leukaemia (AML) are fms-like tyrosine kinase-3 gene (FLT3) and nucleophosmin-1 (NPM1)
    mutations. Our study aims to develop a cost effective and comprehensive in-house conventional PCR method for
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations and to evaluate the frequency of these mutations in patients
    with cytogenetically normal (CN) AML in our population. Methods: A total of 199 samples from AML patients (95
    women, 104 men) were included in the study. Mutation analyses were performed using polymerase chain reaction
    (PCR) and gene sequencing. Result: Sixty-eight patients were positive for the mutations. FLT3-ITD mutations were
    detected in 32 patients (16.1%), followed by FLT3-D835 in 5 (2.5%) and NPM1 in 54 (27.1%). Double mutations of
    NPM1 and FLT3-ITD were detected in 23 cases (11.6%). Assays validation were performed using Sanger sequencing
    and showed 100% concordance with in house method. Conclusion: The optimized in-house PCR assays for the
    detection of FLT3-ITD, FLT3-D835 and NPM1 mutations in AML patients were robust, less labour intensive and cost
    effective. These assays can be used as diagnostic tools for mutation detection in AML patients since identification of
    these mutations are important for prognostication and optimization of patient care.
    Matched MeSH terms: DNA Mutational Analysis
  7. Rani AQ, Sasongko TH, Sulong S, Bunyan D, Salmi AR, Zilfalil BA, et al.
    J. Neurogenet., 2013 Jun;27(1-2):11-5.
    PMID: 23438214 DOI: 10.3109/01677063.2012.762580
    We undertook the clinical feature examination and dystrophin analysis using multiplex ligation-dependent probe amplification (MLPA) and direct DNA sequencing of selected exons in a cohort of 35 Malaysian Duchenne/Becker muscular dystrophy (DMD/BMD) patients. We found 27 patients with deletions of one or more exons, 2 patients with one exon duplication, 2 patients with nucleotide deletion, and 4 patients with nonsense mutations (including 1 patient with two nonsense mutations in the same exon). Although most cases showed compliance to the reading frame rule, we found two unrelated DMD patients with an in-frame deletion of the gene. Two novel mutations have been detected in the Dystrophin gene and our results were compatible with other studies where the majority of the mutations (62.8%) are located in the distal hotspot. However, the frequency of the mutations in our patient varied as compared with those found in other populations.
    Matched MeSH terms: DNA Mutational Analysis
  8. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
    Matched MeSH terms: DNA Mutational Analysis/methods
  9. Sasongko TH, Gunadi, Zilfalil BA, Zabidi-Hussin Z
    J. Neurogenet., 2011 Mar;25(1-2):15-6.
    PMID: 21338334 DOI: 10.3109/01677063.2011.559561
    The authors suggest a simplification for the current molecular genetic testing of spinal muscular atrophy (SMA). Deletion analysis of SMN1 exon 7 alone may be necessary and sufficient for the diagnosis of SMA. It is based on sole contribution of survival motor neuron 1 (SMN1) exon 7 to SMA pathogenesis.
    Matched MeSH terms: DNA Mutational Analysis
  10. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis/economics*; DNA Mutational Analysis/methods*
  11. Tan JA, George E, Tan KL, Chow T, Tan PC, Hassan J, et al.
    Clin Exp Med, 2004 Dec;4(3):142-7.
    PMID: 15599663 DOI: 10.1007/s10238-004-0048-x
    Beta-thalassemia is the most-common genetic disorder of hemoglobin synthesis in Malaysia, and about 4.5% of the population are heterozygous carriers of the disorder. Prenatal diagnosis was performed for 96 couples using the Amplification Refractory Mutation System and Gap-Polymerase Chain Reaction. We identified 17 beta-globin defects-initiation codon for translation (T-G), -29 (A-G), -28 (A-G), CAP +1 (A-C), CD 8/9 (+G), CD 15 (G-A), CD 17 (A-T), CD 19 (A-G), Hb E (G-A), IVS1-1 (G-T), IVS1-5 (G-C), CD 41/42 (-CTTT), CD 71-72 (+A), IVS2-654 (CT), poly A(A-G), 100-kb Ggamma(Agammadeltabeta) degrees and 45-kb Filipino deletions. The 192 beta-alleles studied comprised Chinese (151 patients), Malay (21), Orang Asli from East Malaysia (15), Filipino (1), Indian (1), Indonesian Chinese (2), and Thai (1). In the Chinese, 2 beta-globin defects at CD 41/42 and IVS2-654 were responsible for 74% of beta-thalassemia. beta-mutations at CD 19, IVS1-1 (G-T), IVS1-5, poly A, and hemoglobin E caused 76% of the hemoglobin disorders in the Malays. The Filipino 45-kb deletion caused 73.3% of bthalassemia in the Orang Asli. Using genomic sequencing, the rare Chinese beta-mutation at CD 43 (G-T) was confirmed in 2 Chinese, and the Mediterranean mutation IVS1-1 (G-A) was observed in a Malay beta-thalassemia carrier. The beta-globin mutations confirmed in this prenatal diagnosis study were heterogenous and 65 (68%) couples showed a different globin defect from each other. The use of specific molecular protocols has allowed rapid and successful prenatal diagnosis of beta-thalassemia in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  12. Jesuraj SAV, Sarker MMR, Ming LC, Praya SMJ, Ravikumar M, Wui WT
    PLoS One, 2017;12(8):e0181745.
    PMID: 28813436 DOI: 10.1371/journal.pone.0181745
    Microbial anti-cancer enzymes have been proven to be effective and economical agents for cancer treatment. Aeromonas veronii has been identified as a microorganism with the potential to produce L-glutaminase, an anticancer agent effective against acute lymphocytic leukaemia. In this study, a selective medium of Aeromonas veronii was used to culture the microorganism. Strain improvement was done by adaptive and induced mutational techniques. A selective minimal agar media was incorporated for the growth of the strain which further supports adaptive mutation. Strains were also UV-irradiated and successively treated with N-methyl-N'-nitro-N-nitrosoguanidine to find a resilient strain capable of producing L-glutaminase efficiently. The Plackett-Burman design and central composite designs were used to screen and optimize additional carbon and nitrogen sources. Adaptive mutation resulted in promising yield improvements compared to native strain (P<0.001). The mean yield of 30 treated colonies from the induced mutation was significantly increased compared to the non-induced strain (P< 0.001). The economically feasible statistical designs were found to reinforce each other in order to maximize the yield of the enzyme. The interactions of nutrient factors were understood from the 3D response surface plots. The model was found to be a perfect fit in terms of maximizing enzyme yield, with the productivity improving at every stage to a fourfold output of enzyme (591.11 ±7.97 IU/mL) compared to the native strain (135±3.51 IU/mL).
    Matched MeSH terms: DNA Mutational Analysis
  13. Lau TY, Sylvi M, William T
    Malar J, 2013;12:445.
    PMID: 24321120 DOI: 10.1186/1475-2875-12-445
    The sulphadoxine/pyrimethamine (SDX/PYR) combination had been chosen to treat uncomplicated falciparum malaria in Malaysia for more than 30 years. Non-silent mutations in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are responsible for the resistance to pyrimethamine and sulphadoxine, respectively. This study reports the mutational analysis of pfdhfr and pfdhps in single Plasmodium falciparum infection isolates from the interior division of Sabah, Malaysian Borneo.
    Matched MeSH terms: DNA Mutational Analysis
  14. Habib A, Azize NA, Yakob Y, Md Yunus Z, Wee TK
    Malays J Pathol, 2016 Dec;38(3):305-310.
    PMID: 28028301 MyJurnal
    Lysinuric protein intolerance (LPI) is an inborn error of dibasic amino acid transport due to a defect in the dibasic amino acid transporter in the renal and intestine and has a heterogenous presentation. Three Malaysian patients with LPI were studied and their biochemical and molecular findings compared. There were differences and similarities in the biochemical and molecular findings. Molecular analysis of SLC7A7 gene revealed a novel mutation c.235G>A; p.(Gly79Arg) in exon three in Patient 1 and a mutation c.1417C>T; p.(Arg473*) in exon 10 in patient 2 and 3. The degree of concentration of dibasic amino acids may determine the type of disease of the cell membrane transport, however, a positive molecular confirmation will secure the diagnosis.
    Matched MeSH terms: DNA Mutational Analysis
  15. Wong FL, Boo NY, Ainoon O, Wang MK
    Malays J Pathol, 2009 Dec;31(2):99-104.
    PMID: 20514852 MyJurnal
    This study aimed to determine the prevalence of four variants of organic anion transporter polypeptide 2 (OATP2) gene, and their association with severe hyperbilirubinemia.
    Matched MeSH terms: DNA Mutational Analysis
  16. Ngoi ST, Thong KL
    Biomed Res Int, 2014;2014:718084.
    PMID: 25371903 DOI: 10.1155/2014/718084
    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.
    Matched MeSH terms: DNA Mutational Analysis/methods*
  17. Ton SH, Iskandar K, Noriah R, Thanaletchimy N
    Scand. J. Infect. Dis., 1996;28(6):543-8.
    PMID: 9060053
    As most published studies on precore mutants have been carried out on isolates from patients with liver diseases, and it is unclear whether HBsAg carriers with viraemia in the absence of HBeAg are also generally infected by such mutants, it was decided to sequence the precore region in some HBV-DNA isolated from HBsAg-positive carriers. Precore sequences of HBV-DNA from 43 HBsAg carriers in Malaysia were studied. Three HBV subtypes were identified according to the nucleotide sequence of the precore region. Most of the carriers were found to be infected by the subtype adr. Mutations were detected in the precore regions. The most common conserved mutation was a silent mutation involving conversion from T to C (CCT to CCC) at position 1858 at codon 15 (proline). It was found that 4/43 (9.3%) had a mutation at the penultimate codon where TGG was changed to TAG. All 4 isolates with the TAG mutation had nt T at position 1858. Of the 4 carriers who were infected by these mutant viruses, 2 were coinfected with the wild type, 1 was infected only by a variant with the mutation at position 1896, while another was infected by a variant with mutations at positions 1896 and 1899. Three of the 4 were anti-HBe positive while 1 was HBeAg positive. Alanine aminotransaminase activities in all 4 carriers were normal. This study therefore demonstrated that variants with stop codons at the penultimate codon could be found in asymptomatic carriers in Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  18. Phuah SY, Lee SY, Kang P, Kang IN, Yoon SY, Thong MK, et al.
    PLoS One, 2013;8(8):e73638.
    PMID: 23977390 DOI: 10.1371/journal.pone.0073638
    The partner and localizer of breast cancer 2 (PALB2) is responsible for facilitating BRCA2-mediated DNA repair by serving as a bridging molecule, acting as the physical and functional link between the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) proteins. Truncating mutations in the PALB2 gene are rare but are thought to be associated with increased risks of developing breast cancer in various populations.
    Matched MeSH terms: DNA Mutational Analysis
  19. Thirthagiri E, Lee SY, Kang P, Lee DS, Toh GT, Selamat S, et al.
    Breast Cancer Res, 2008;10(4):R59.
    PMID: 18627636 DOI: 10.1186/bcr2118
    The cost of genetic testing and the limited knowledge about the BRCA1 and BRCA2 genes in different ethnic groups has limited its availability in medium- and low-resource countries, including Malaysia. In addition, the applicability of many risk-assessment tools, such as the Manchester Scoring System and BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) which were developed based on mutation rates observed primarily in Caucasian populations using data from multiplex families, and in populations where the rate of breast cancer is higher, has not been widely tested in Asia or in Asians living elsewhere. Here, we report the results of genetic testing for mutations in the BRCA1 or BRCA2 genes in a series of families with breast cancer in the multi-ethnic population (Malay, Chinese and Indian) of Malaysia.
    Matched MeSH terms: DNA Mutational Analysis
  20. Ng PS, Wen WX, Fadlullah MZ, Yoon SY, Lee SY, Thong MK, et al.
    Clin Genet, 2016 10;90(4):315-23.
    PMID: 26757417 DOI: 10.1111/cge.12735
    Although an association between protein-truncating variants and breast cancer risk has been established for 11 genes, only alterations in BRCA1, BRCA2, TP53 and PALB2 have been reported in Asian populations. Given that the age of onset of breast cancer is lower in Asians, it is estimated that inherited predisposition to breast cancer may be more significant. To determine the potential utility of panel testing, we investigated the prevalence of germline alterations in 11 established and 4 likely breast cancer genes in a cross-sectional hospital-based cohort of 108 moderate to high-risk breast cancer patients using targeted next generation sequencing. Twenty patients (19%) were identified to carry deleterious mutations, of whom 13 (12%) were in the BRCA1 or BRCA2, 6 (6%) were in five other known breast cancer predisposition genes and 1 patient had a mutation in both BRCA2 and BARD1. Our study shows that BRCA1 and BRCA2 account for the majority of genetic predisposition to breast cancer in our cohort of Asian women. Although mutations in other known breast cancer genes are found, the functional significance and breast cancer risk have not yet been determined, thus limiting the clinical utility of panel testing in Asian populations.
    Matched MeSH terms: DNA Mutational Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links