Displaying publications 1 - 20 of 119 in total

Abstract:
Sort:
  1. da Silva Voorham JM
    Ned Tijdschr Geneeskd, 2014;158:A7946.
    PMID: 25227888
    Sylvatic dengue viruses are both evolutionarily and ecologically distinguishable from the human dengue virus (DENV). Sporadic episodes of sylvatic human infections in West Africa and Southeast Asia suggest that sylvatic DENV regularly come into contact with human beings. Following a study on the sylvatic transmission cycle in Malaysia in 2007, researchers announced that a new DENV serotype, DENV-5, had been discovered. Scientists are still sceptical about these new findings, and indicate that more data is necessary to determine whether this 'new' virus really is a different serotype or whether it is a variant of one of the four DENV serotypes already known. The good news is that this new variant has not yet established itself in the human transmission cycle. However, if it really is a new serotype this will have implications for the long-term control of dengue using vaccines currently under development.
    Matched MeSH terms: Dengue/virology*
  2. Yang F, Guo GZ, Chen JQ, Ma HW, Liu T, Huang DN, et al.
    Epidemiol Infect, 2014 Feb;142(2):225-33.
    PMID: 23587429 DOI: 10.1017/S0950268813000897
    A suspected dengue fever outbreak occurred in 2010 at a solitary construction site in Shenzhen city, China. To investigate this epidemic, we used serological, molecular biological, and bioinformatics techniques. Of nine serum samples from suspected patients, we detected seven positive for dengue virus (DENV) antibodies, eight for DENV-1 RNA, and three containing live viruses. The isolated virus, SZ1029 strain, was sequenced and confirmed as DENV-1, showing the highest E-gene homology to D1/Malaysia/36000/05 and SG(EHI)DED142808 strains recently reported in Southeast Asia. Further phylogenetic tree analysis confirmed their close relationship. At the epidemic site, we also detected 14 asymptomatic co-workers (out of 291) positive for DENV antibody, and DENV-1-positive mosquitoes. Thus, we concluded that DENV-1 caused the first local dengue fever outbreak in Shenzhen. Because no imported case was identified, the molecular fingerprints of the SZ1029 strain suggest this outbreak may be due to vertical transmission imported from Southeast Asia.
    Matched MeSH terms: Dengue/virology
  3. Villabona-Arenas CJ, Zanotto PM
    Infect Genet Evol, 2011 Jul;11(5):878-85.
    PMID: 21335103 DOI: 10.1016/j.meegid.2011.02.007
    Dengue virus type 4 (DENV-4) circulates in tropical and subtropical countries from Asia and the Americas. Despite the importance of dengue virus distribution, little is known about the worldwide viral spread. Following a Bayesian phylogenetic approach we inferred the evolutionary history of 310 isolates sampled from 37 countries during the time period 1956-2008 and the spreading dynamics for genotypes I and II. The region (tropical rainforest biome) comprised by Malaysia-Thailand was the most likely ancestral area from which the serotype has originated and spread. Interestingly, cross-correlation analysis on demographic time series with the Asian sequences showed a statistically significant negative correlation that could be suggestive of competition among genotypes within the same serotype.
    Matched MeSH terms: Dengue/virology*
  4. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

    Matched MeSH terms: Dengue/virology
  5. Rothan HA, Bahrani H, Rahman NA, Yusof R
    BMC Microbiol, 2014;14:140.
    PMID: 24885331 DOI: 10.1186/1471-2180-14-140
    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells.
    Matched MeSH terms: Dengue/virology
  6. Rothan HA, Bahrani H, Mohamed Z, Abd Rahman N, Yusof R
    PLoS One, 2014;9(4):e94561.
    PMID: 24722532 DOI: 10.1371/journal.pone.0094561
    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities.
    Matched MeSH terms: Dengue/virology
  7. Ngim CF, Husain SMT, Hassan SS, Dhanoa A, Ahmad SAA, Mariapun J, et al.
    PLoS Negl Trop Dis, 2021 05;15(5):e0009445.
    PMID: 34014983 DOI: 10.1371/journal.pntd.0009445
    BACKGROUND: Dengue fever is the most common mosquito-borne infection worldwide where an expanding surveillance and characterization of this infection are needed to better inform the healthcare system. In this surveillance-based study, we explored the prevalence and distinguishing features of dengue fever amongst febrile patients in a large community-based health facility in southern peninsular Malaysia.

    METHODS: Over six months in 2018, we recruited 368 adults who met the WHO 2009 criteria for probable dengue infection. They underwent the following blood tests: full blood count, dengue virus (DENV) rapid diagnostic test (RDT), ELISA (dengue IgM and IgG), nested RT-PCR for dengue, multiplex qRT-PCR for Zika, Chikungunya and dengue as well as PCR tests for Leptopspira spp., Japanese encephalitis and West Nile virus.

    RESULTS: Laboratory-confirmed dengue infections (defined by positive tests in NS1, IgM, high-titre IgG or nested RT-PCR) were found in 167 (45.4%) patients. Of these 167 dengue patients, only 104 (62.3%) were positive on rapid diagnostic testing. Dengue infection was significantly associated with the following features: family or neighbours with dengue in the past week (AOR: 3.59, 95% CI:2.14-6.00, p<0.001), cutaneous rash (AOR: 3.58, 95% CI:1.77-7.23, p<0.001), increased temperature (AOR: 1.33, 95% CI:1.04-1.70, p = 0.021), leucopenia (white cell count < 4,000/μL) (AOR: 3.44, 95% CI:1.72-6.89, p<0.001) and thrombocytopenia (platelet count <150,000/μL)(AOR: 4.63, 95% CI:2.33-9.21, p<0.001). Dengue infection was negatively associated with runny nose (AOR: 0.47, 95% CI:0.29-0.78, p = 0.003) and arthralgia (AOR: 0.42, 95% CI:0.24-0.75, p = 0.004). Serotyping by nested RT-PCR revealed mostly mono-infections with DENV-2 (n = 64), DENV-1 (n = 32) and DENV-3 (n = 17); 14 co-infections occurred with DENV-1/DENV-2 (n = 13) and DENV-1/DENV-4 (n = 1). Besides dengue, none of the pathogens above were found in patients' serum.

    CONCLUSIONS: Acute undifferentiated febrile infections are a diagnostic challenge for community-based clinicians. Rapid diagnostic tests are increasingly used to diagnose dengue infection but negative tests should be interpreted with caution as they fail to detect a considerable proportion of dengue infection. Certain clinical features and haematological parameters are important in the clinical diagnosis of dengue infection.

    Matched MeSH terms: Dengue/virology
  8. Yang F, He JF, Xian HX, Zhang HL, He YQ, Yang H, et al.
    Zhonghua Yu Fang Yi Xue Za Zhi, 2009 Sep;43(9):798-802.
    PMID: 20137564
    To isolate and identify the pathogen of Dengue fever from Shenzhen city in 2005 - 2006, and to analyze the molecular characteristics of the isolated Dengue virus strain as well as to explore its possible origin.
    Matched MeSH terms: Dengue/virology*
  9. Lin F, Yang H, Zhang L, Fang SH, Zhan XF, Yang LY
    Arch Virol, 2019 Aug;164(8):2131-2135.
    PMID: 31102050 DOI: 10.1007/s00705-019-04266-1
    A large-scale dengue fever (DF) outbreak occurred in Chaozhou, Guangdong province, China 2015. In our study, 528 dengue-positive patient samples were collected for clinical and laboratory data analysis. 491 cases (93.0%) were primary dengue fever (PDF), 22 cases (4.2%) were dengue hemorrhagic fever (DHF) and 15 cases (2.8%) were diagnosed with severe dengue fever (SDF). All cases were infected by dengue virus serotype 2 (DENV-2), and the isolated strains belonged to cosmopolitan genotype, which were grouped closely with Malaysia strains from 2010 to 2014. Moreover, the study showed that laboratory indices have significantly difference in PDF, DHF and SDF patients. A comprehensive analysis of these data could assist and guide the clinical diagnosis for DF, which has an important significance for the control of dengue virus infection.
    Matched MeSH terms: Dengue/virology
  10. Guo C, Zhou Z, Wen Z, Liu Y, Zeng C, Xiao D, et al.
    PMID: 28748176 DOI: 10.3389/fcimb.2017.00317
    Dengue is an arthropod-borne infectious disease caused by dengue virus (DENV) infection and transmitted byAedesmosquitoes. Approximately 50-100 million people are infected with DENV each year, resulting in a high economic burden on both governments and individuals. Here, we conducted a systematic review and meta-analysis to summarize information regarding the epidemiology, clinical characteristics, and serotype distribution and risk factors for global dengue outbreaks occurring from 1990 to 2015. We searched the PubMed, Embase and Web of Science databases through December 2016 using the term "dengue outbreak." In total, 3,853 studies were identified, of which 243 studies describing 262 dengue outbreaks met our inclusion criteria. The majority of outbreak-associated dengue cases were reported in the Western Pacific Region, particularly after the year 2010; these cases were primarily identified in China, Singapore and Malaysia. The pooled mean age of dengue-infected individuals was 30.1 years; of the included patients, 54.5% were male, 23.2% had DHF, 62.0% had secondary infections, and 1.3% died. The mean age of dengue patients reported after 2010 was older than that of patients reported before 2010 (34.0 vs. 27.2 years); however, the proportions of patients who had DHF, had secondary infections and died significantly decreased after 2010. Fever, malaise, headache, and asthenia were the most frequently reported clinical symptoms and signs among dengue patients. In addition, among the identified clinical symptoms and signs, positive tourniquet test (OR= 4.86), ascites (OR= 13.91) and shock (OR= 308.09) were identified as the best predictors of dengue infection, DHF and mortality, respectively (bothP< 0.05). The main risk factors for dengue infection, DHF and mortality were living with uncovered water container (OR= 1.65), suffering from hypotension (OR= 6.18) and suffering from diabetes mellitus (OR= 2.53), respectively (allP< 0.05). The serotype distribution varied with time and across WHO regions. Overall, co-infections were reported in 47.7% of the evaluated outbreaks, and the highest pooled mortality rate (2.0%) was identified in DENV-2 dominated outbreaks. Our study emphasizes the necessity of implementing programs focused on targeted prevention, early identification, and effective treatment.
    Matched MeSH terms: Dengue/virology
  11. Li G, Pan P, He Q, Kong X, Wu K, Zhang W, et al.
    Virol Sin, 2017 Feb;32(1):63-72.
    PMID: 28120220 DOI: 10.1007/s12250-016-3872-8
    The dengue virus (DENV) is a vital global public health issue. The 2014 dengue epidemic in Guangzhou, China, caused approximately 40,000 cases of infection and five deaths. We carried out a comprehensive investigation aimed at identifying the transmission sources in this dengue epidemic. To analyze the phylogenetics of the 2014 dengue strains, the envelope (E) gene sequences from 17 viral strains isolated from 168 dengue patient serum samples were sequenced and a phylogenetic tree was reconstructed. All 17 strains were serotype I strains, including 8 genotype I and 9 genotype V strains. Additionally, 6 genotype I strains that were probably introduced to China from Thailand before 2009 were widely transmitted in the 2013 and 2014 epidemics, and they continued to circulate until 2015, with one affinis strain being found in Singapore. The other 2 genotype I strains were introduced from the Malaya Peninsula in 2014. The transmission source of the 9 genotype V strains was from Malaysia in 2014. DENVs of different serotypes and genotypes co-circulated in the 2014 dengue outbreak in Guangzhou. Moreover, not only had DENV been imported to Guangzhou, but it had also been gradually exported, as the viruses exhibited an enzootic transmission cycle in Guangzhou.
    Matched MeSH terms: Dengue/virology*
  12. AbuBakar S, Shu MH, Johari J, Wong PF
    Int J Med Sci, 2014;11(6):538-44.
    PMID: 24782642 DOI: 10.7150/ijms.7896
    Alteration in the endothelium leading to increased vascular permeability contributes to plasma leakage seen in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An earlier study showed that senescent endothelial cells (ECs) altered the ECs permeability. Here we investigated the susceptibility of senescing human umbilical vein endothelial cells (HUVECs) to dengue virus infection and determined if dengue virus infection induces HUVECs senescence. Our results suggest that DENV type-2 (DENV-2) foci forming unit (FFU) and extracellular virus RNA copy number were reduced by at least 35% and 85% in infection of the intermediate young and early senescent HUVECs, respectively, in comparison to infection of young HUVECs. No to low infectivity was recovered from infection of late senescent HUVECs. DENV infection also increases the percentage of HUVECs expressing senescence-associated (SA)-β-gal, cells arrested at the G2/M phase or 4N DNA content stage and cells with enlarged morphology, indicative of senescing cells. Alteration of HUVECs morphology was recorded using impedance-based real-time cell analysis system following DENV-2 infection. These results suggest that senescing HUVECs do not support DENV infection and DENV infection induces HUVECs senescence. The finding highlights the possible role of induction of senescence in DENV infection of the endothelial cells.
    Matched MeSH terms: Dengue/virology; Severe Dengue/virology
  13. Jessie K, Fong MY, Devi S, Lam SK, Wong KT
    J Infect Dis, 2004 Apr 15;189(8):1411-8.
    PMID: 15073678
    Dengue viral antigens have been demonstrated in several types of naturally infected human tissues, but little is known of whether these same tissues have detectable viral RNA. We studied tissue specimens from patients with serologically or virologically confirmed dengue infections by immunohistochemistry (IHC) and in situ hybridization (ISH), to localize viral antigen and RNA, respectively. IHC was performed on specimens obtained from 5 autopsies and 24 biopsies and on 20 blood-clot samples. For ISH, antisense riboprobes to the dengue E gene were applied to tissue specimens in which IHC was positive. Viral antigens were demonstrated in Kupffer and sinusoidal endothelial cells of the liver; macrophages, multinucleated cells, and reactive lymphoid cells in the spleen; macrophages and vascular endothelium in the lung; kidney tubules; and monocytes and lymphocytes in blood-clot samples. Positive-strand viral RNA was detected in the same IHC-positive cells found in the spleen and blood-clot samples. The strong, positive ISH signal in these cells indicated a high copy number of viral RNA, suggesting replication.
    Matched MeSH terms: Dengue/virology*
  14. Azil AH, Bruce D, Williams CR
    J Vector Ecol, 2014 Jun;39(1):153-63.
    PMID: 24820568 DOI: 10.1111/j.1948-7134.2014.12082.x
    We investigated spatial autocorrelation of female Aedes aegypti L. mosquito abundance from BG-Sentinel trap and sticky ovitrap collections in Cairns, north Queensland, Australia. BG-Sentinel trap collections in 2010 show a significant spatial autocorrelation across the study site and over a smaller spatial extent, while sticky ovitrap collections only indicate a non-significant, weak spatial autocorrelation. The BG-Sentinel trap collections were suitable for spatial interpolation using ordinary kriging and cokriging techniques. The uses of Premise Condition Index and potential breeding container data have helped improve our prediction of vector abundance. Semiovariograms and prediction maps indicate that the spatial autocorrelation of mosquito abundance determined by BG-Sentinel traps extends farther compared to sticky ovitrap collections. Based on our data, fewer BG-Sentinel traps are required to represent vector abundance at a series of houses compared to sticky ovitraps. A lack of spatial structure was observed following vector control treatment in the area. This finding has implications for the design and costs of dengue vector surveillance programs.
    Matched MeSH terms: Dengue/virology
  15. Sang S, Liu Q, Guo X, Wu D, Ke C, Liu-Helmersson J, et al.
    PLoS Negl Trop Dis, 2021 12;15(12):e0009970.
    PMID: 34928951 DOI: 10.1371/journal.pntd.0009970
    INTRODUCTION: Dengue has become a more serious human health concern in China, with increased incidence and expanded outbreak regions. The knowledge of the cross-sectional and longitudinal epidemiological characteristics and the evolutionary dynamics of dengue in high-risk areas of China is limited.

    METHODS: Records of dengue cases from 2013 to 2016 were obtained from the China Notifiable Disease Surveillance System. Full envelope gene sequences of dengue viruses detected from the high-risk areas of China were collected. Maximum Likelihood tree and haplotype network analyses were conducted to explore the phylogenetic relationship of viruses from high-risk areas of China.

    RESULTS: A total of 56,520 cases was reported in China from 2013 to 2016. During this time, Yunnan, Guangdong and Fujian provinces were the high-risk areas. Imported cases occurred almost year-round, and were mainly introduced from Southeast Asia. The first indigenous case usually occurred in June to August, and the last one occurred before December in Yunnan and Fujian provinces but in December in Guangdong Province. Seven genotypes of DENV 1-3 were detected in the high-risk areas, with DENV 1-I the main genotype and DENV 2-Cosmopolitan the secondary one. The Maximum Likelihood trees show that almost all the indigenous viruses separated into different clusters. DENV 1-I viruses were found to be clustered in Guangdong Province, but not in Fujian and Yunnan, from 2013 to 2015. The ancestors of the Guangdong viruses in the cluster in 2013 and 2014 were most closely related to strains from Thailand or Singapore, and the Guangdong virus in 2015 was most closely related to the Guangdong virus of 2014. Based on closest phylogenetic relationships, viruses from Myanmar possibly initiated further indigenous cases in Yunnan, those from Indonesia in Fujian, while viruses from Thailand, Malaysia, Singapore and Indonesia were predominant in Guangdong Province.

    CONCLUSIONS: Dengue is still an imported disease in China, although some genotypes continued to circulate in successive years. Viral phylogenies based on the envelope gene suggested periodic introductions of dengue strains into China, primarily from Southeast Asia, with occasional sustained, multi-year transmission in some regions of China.

    Matched MeSH terms: Dengue/virology
  16. Chem YK, Chua KB, Malik Y, Voon K
    Trop Biomed, 2015 Jun;32(2):344-51.
    PMID: 26691263 MyJurnal
    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.
    Matched MeSH terms: Dengue/virology*
  17. Dieng H, Hassan RB, Hassan AA, Ghani IA, Abang FB, Satho T, et al.
    Acta Trop, 2015 May;145:68-78.
    PMID: 25617636 DOI: 10.1016/j.actatropica.2015.01.004
    Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions.
    Matched MeSH terms: Dengue/virology
  18. Ab-Fatah M, Subenthiran S, Abdul-Rahman PS, Saat Z, Thayan R
    Trop Biomed, 2015 Mar;32(1):187-91.
    PMID: 25801270 MyJurnal
    Dengue serotype surveillance is important as any changes in serotype distribution may result in an outbreak or increase in severe dengue cases. This study aimed to determine circulating dengue serotypes in two hospitals in Selangor. Serum samples were collected from patients admitted for dengue at these two major public hospitals i.e. Hospital Sungai Buloh (HSB) and Hospital Tunku Ampuan Rahimah (HTAR) between November 2010 and August 2011 and subjected to real-time RT-PCR using SYBR® Green. All four dengue serotypes were detected in samples from both hospitals. The predominating serotype was dengue 1 in samples from both hospitals (HSB, DENV-1; 25.53 % and HTAR, DENV-1; 32.1 %).
    Matched MeSH terms: Dengue/virology*
  19. Tan JW, Wan Zahidi NF, Kow ASF, Soo KM, Shaari K, Israf DA, et al.
    Biosci Rep, 2019 06 28;39(6).
    PMID: 31110077 DOI: 10.1042/BSR20181273
    Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
    Matched MeSH terms: Dengue/virology
  20. Franco L, Palacios G, Martinez JA, Vázquez A, Savji N, De Ory F, et al.
    PLoS Negl Trop Dis, 2011 Aug;5(8):e1251.
    PMID: 21829739 DOI: 10.1371/journal.pntd.0001251
    Dengue virus (DENV) circulates in human and sylvatic cycles. Sylvatic strains are both ecologically and evolutionarily distinct from endemic viruses. Although sylvatic dengue cycles occur in West African countries and Malaysia, only a few cases of mild human disease caused by sylvatic strains and one single case of dengue hemorrhagic fever in Malaysia have been reported. Here we report a case of dengue hemorrhagic fever (DHF) with thrombocytopenia (13000/µl), a raised hematocrit (32% above baseline) and mucosal bleeding in a 27-year-old male returning to Spain in November 2009 after visiting his home country Guinea Bissau. Sylvatic DENV-2 West African lineage was isolated from blood and sera. This is the first case of DHF associated with sylvatic DENV-2 in Africa and the second case worldwide of DHF caused by a sylvatic strain.
    Matched MeSH terms: Severe Dengue/virology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links