Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Drug Compounding/methods*
  2. Tamilvanan S, Kumar BA, Senthilkumar SR, Baskar R, Sekharan TR
    AAPS PharmSciTech, 2010 Jun;11(2):904-9.
    PMID: 20496017 DOI: 10.1208/s12249-010-9455-3
    The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer-chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze-thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze-thaw cycling. After storing the emulsion at 4 degrees C, 25 degrees C, and 37 degrees C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37 degrees C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.
    Matched MeSH terms: Drug Compounding/methods
  3. Zeeshan F, Bukhari NI
    AAPS PharmSciTech, 2010 Jun;11(2):910-6.
    PMID: 20496016 DOI: 10.1208/s12249-010-9456-2
    Modified-release multiple-unit tablets of loratadine and pseudoephedrine hydrochloride with different release profiles were prepared from the immediate-release pellets comprising the above two drugs and prolonged-release pellets containing only pseudoephedrine hydrochloride. The immediate-release pellets containing pseudoephedrine hydrochloride alone or in combination with loratadine were prepared using extrusion-spheronization method. The pellets of pseudoephedrine hydrochloride were coated to prolong the drug release up to 12 h. Both immediate- and prolonged-release pellets were filled into hard gelatin capsule and also compressed into tablets using inert tabletting granules of microcrystalline cellulose Ceolus KG-801. The in vitro drug dissolution study conducted using high-performance liquid chromatography method showed that both multiple-unit capsules and multiple-unit tablets released loratadine completely within a time period of 2 h, whereas the immediate-release portion of pseudoephedrine hydrochloride was liberated completely within the first 10 min of dissolution study. On the other hand, the release of pseudoephedrine hydrochloride from the prolonged release coated pellets was prolonged up to 12 hr and followed zero-order release kinetic. The drug dissolution profiles of multiple-unit tablets and multiple-unit capsules were found to be closely similar, indicating that the integrity of pellets remained unaffected during the compression process. Moreover, the friability, hardness, and disintegration time of multiple-unit tablets were found to be within BP specifications. In conclusion, modified-release pellet-based tablet system for the delivery of loratadine and pseudoephedrine hydrochloride was successfully developed and evaluated.
    Matched MeSH terms: Drug Compounding/methods
  4. Zeeshan F, Peh KK, Tan YT
    AAPS PharmSciTech, 2009;10(3):850-7.
    PMID: 19554454 DOI: 10.1208/s12249-009-9278-2
    Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion-spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.
    Matched MeSH terms: Drug Compounding
  5. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Drug Compounding/methods
  6. Nair RS, Morris A, Billa N, Leong CO
    AAPS PharmSciTech, 2019 Jan 10;20(2):69.
    PMID: 30631984 DOI: 10.1208/s12249-018-1279-6
    Curcumin-loaded chitosan nanoparticles were synthesised and evaluated in vitro for enhanced transdermal delivery. Zetasizer® characterisation of three different formulations of curcumin nanoparticles (Cu-NPs) showed the size ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm, the polydispersity index (PDI) values were between 0.26 and 0.46 and the zeta potential values were positive (+ 18.1 to + 20.2 mV). Scanning electron microscopy (SEM) images supported this size data and confirmed the spherical shape of the nanoparticles. All the formulations showed excellent entrapment efficiency above 80%. FTIR results demonstrate the interaction between chitosan and sodium tripolyphosphate (TPP) and confirm the presence of curcumin in the nanoparticle. Differential scanning calorimetry (DSC) studies of Cu-NPs indicate the presence of curcumin in a disordered crystalline or amorphous state, suggesting the interaction between the drug and the polymer. Drug release studies showed an improved drug release at pH 5.0 than in pH 7.4 and followed a zero order kinetics. The in vitro permeation studies through Strat-M® membrane demonstrated an enhanced permeation of Cu-NPs compared to aqueous curcumin solution (p ˂ 0.05) having a flux of 0.54 ± 0.03 μg cm-2 h-1 and 0.44 ± 0.03 μg cm-2 h-1 corresponding to formulations 5:1 and 3:1, respectively. The cytotoxicity assay on human keratinocyte (HaCat) cells showed enhanced percentage cell viability of Cu-NPs compared to curcumin solution. Cu-NPs developed in this study exhibit superior drug release and enhanced transdermal permeation of curcumin and superior percentage cell viability. Further ex vivo and in vivo evaluations will be conducted to support these findings.
    Matched MeSH terms: Drug Compounding
  7. Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, et al.
    AAPS PharmSciTech, 2021 Apr 09;22(3):127.
    PMID: 33835317 DOI: 10.1208/s12249-021-01995-y
    Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
    Matched MeSH terms: Drug Compounding
  8. Ahmad K, Win T, Jaffri JM, Edueng K, Taher M
    AAPS PharmSciTech, 2018 Jan;19(1):371-383.
    PMID: 28744617 DOI: 10.1208/s12249-017-0843-9
    This study aims to investigate the use of palm olein as the oil phase for betamethasone 17-valerate (BV) emulsions. The physicochemical properties of the formulations were characterized. In vitro drug release study was performed with the Hanson Vertical Diffusion Cell System; the samples were quantified with HPLC and the results were compared with commercial products. Optimized emulsion formulations were subjected to stability studies for 3 months at temperatures of 4, 25, and 40°C; the betamethasone 17-valerate content was analyzed using HPLC. The formulations produced mean particle size of 2-4 μm, viscosities of 50-250 mPa.s, and zeta potential between -45 and -68 mV. The rheological analyses showed that the emulsions exhibited pseudoplastic and viscoelastic behavior. The in vitro release of BV from palm olein emulsion through cellulose acetate was 4.5 times higher than that of commercial products and more BV molecules deposited in rat skin. Less than 4% of the drug was degraded in the formulations during the 3-month period when they were subjected to the three different temperatures. These findings indicate that palm olein-in-water emulsion can be an alternative vehicle for topical drug delivery system with superior permeability.
    Matched MeSH terms: Drug Compounding
  9. Long CM, Tang K, Chokshi H, Fotaki N
    AAPS PharmSciTech, 2019 Feb 13;20(3):113.
    PMID: 30761437 DOI: 10.1208/s12249-019-1317-z
    The aim of this study is to investigate the dissolution properties of poorly soluble drugs from their pure form and their amorphous formulation under physiological relevant conditions for oral administration based on surface dissolution ultraviolet (UV) imaging. Dissolution of two poorly soluble drugs (cefuroxime axetil and itraconazole) and their amorphous formulations (Zinnat® and Sporanox®) was studied with the Sirius Surface Dissolution Imager (SDI). Media simulating the fasted state conditions (compendial and biorelevant) with sequential media/flow rate change were used. The dissolution mechanism of cefuroxime axetil in simulated gastric fluid (SGF), fasted state simulated gastric fluid (FaSSGF) and simulated intestinal fluid (SIF) is predominantly swelling as opposed to the convective flow in fasted state simulated intestinal fluid (FaSSIF-V1), attributed to the effect of mixed micelles. For the itraconazole compact in biorelevant media, a clear upward diffusion of the dissolved itraconazole into the bulk buffer solution is observed. Dissolution of itraconazole from the Sporanox® compact is affected by the polyethylene glycol (PEG) gelling layer and hydroxypropyl methylcellulose (HPMC) matrix, and a steady diffusional dissolution pattern is revealed. A visual representation and a quantitative assessment of dissolution properties of poorly soluble compounds and their amorphous formulation can be obtained with the use of surface dissolution imaging under in vivo relevant conditions.
    Matched MeSH terms: Drug Compounding*
  10. Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR
    AAPS PharmSciTech, 2020 Oct 14;21(7):285.
    PMID: 33057878 DOI: 10.1208/s12249-020-01810-0
    Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.
    Matched MeSH terms: Drug Compounding
  11. Meka VS, Nali SR, Songa AS, Kolapalli VR
    AAPS PharmSciTech, 2012 Dec;13(4):1451-64.
    PMID: 23090110 DOI: 10.1208/s12249-012-9873-5
    The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
    Matched MeSH terms: Drug Compounding/methods
  12. Patil J, Pawde DM, Bhattacharya S, Srivastava S
    AAPS PharmSciTech, 2024 Apr 25;25(5):91.
    PMID: 38664316 DOI: 10.1208/s12249-024-02813-x
    Addressing poor solubility and permeability issues associated with synthetic drugs and naturally occurring active compounds is crucial for improving bioavailability. This review explores the potential of phospholipid complex formulation technology to overcome these challenges. Phospholipids, as endogenous molecules, offer a viable solution, with drugs complexed with phospholipids demonstrating a similar absorption mechanism. The non-toxic and biodegradable nature of the phospholipid complex positions it as an ideal candidate for drug delivery. This article provides a comprehensive exploration of the mechanisms underlying phospholipid complexes. Special emphasis is placed on the solvent evaporation method, with meticulous scrutiny of formulation aspects such as the phospholipid ratio to the drug and solvent. Characterization techniques are employed to understand structural and functional attributes. Highlighting the adaptability of the phospholipid complex, the review discusses the loading of various nanoformulations and emulsion systems. These strategies aim to enhance drug delivery and efficacy in various malignancies, including breast, liver, lung, cervical, and pancreatic cancers. The broader application of the drug phospholipid complex is showcased, emphasizing its adaptability in diverse oncological settings. The review not only explores the mechanisms and formulation aspects of phospholipid complexes but also provides an overview of key clinical studies and patents. These insights contribute to the intellectual and translational advancements in drug phospholipid complexes.
    Matched MeSH terms: Drug Compounding/methods
  13. Eghbali Babadi F, Yunus R, Masoudi Soltani S, Shotipruk A
    ACS Omega, 2021 May 04;6(17):11144-11154.
    PMID: 34056270 DOI: 10.1021/acsomega.0c04353
    In this study, a mineral-based coated urea was fabricated in a rotary pan coater using a mixture of gypsum/sulfur/zeolite (G25S25Z50) as an effective and low-cost coating material. The effects of different coating compositions on the dissolution rate of urea and the crushing strength and morphology of the coated urea were investigated. A 25:25:50 (wt %) mixture of gypsum/sulfur/zeolite (G25S25Z50) increased the coating effectiveness to 34.1% with the highest crushing strength (31.06 N). The effectiveness of coated urea was further improved to 46.6% with the addition of a microcrystalline wax (3%) as a sealant. Furthermore, the release mechanisms of various urea fertilizers were determined by fitting the release profiles with six mathematical models, namely, the zeroth-order, first-order, second-order, Higuchi, Ritger & Peppas, and Kopcha models. The results showed that the release mechanism of the uncoated urea and all other coated urea followed the Ritger & Peppas model, suggesting the diffusional release from nonswellable delivery systems. In addition, due to the increased mass-transfer resistance, the kinetic constant was decreased from 0.2233 for uncoated urea to 0.1338 for G25S25Z50-coated urea and was further decreased to 0.0985 when 3% Witcovar 146 sealant was applied.
    Matched MeSH terms: Drug Compounding
  14. Said MA, Musarudin M, Zulkaffli NF
    Ann Nucl Med, 2020 Dec;34(12):884-891.
    PMID: 33141408 DOI: 10.1007/s12149-020-01543-x
    OBJECTIVE: 18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F.

    METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.

    RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.

    CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.

    Matched MeSH terms: Drug Compounding
  15. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Drug Compounding/methods
  16. Sheshala R, Khan N, Chitneni M, Darwis Y
    Arch Pharm Res, 2011 Nov;34(11):1945-56.
    PMID: 22139694 DOI: 10.1007/s12272-011-1115-y
    The aim of this study was to formulate cost effective taste-masked orally disintegrating tablets of ondansetron, a bitter drug using different superdisintegrants by a wet granulation technique. Microcrystalline cellulose (Avicel) as a diluent and disintegrant in addition to aspartame as a sweetener were used in all formulations. The prepared tablets were evaluated for weight variation, thickness, hardness, friability, drug content, water content, in vitro disintegration time and in vitro drug release. The tablets' hardness was maintained in the range of 2-3 kg and friability was <1% for all batches. All tablet formulations disintegrated rapidly in vitro within 5.83 to 33.0 sec. The optimized formulation containing 15% Polyplasdone XL-10 released more than 90% of drug within 5 min and the release was comparable to that of a commercial product. In human volunteers, optimized formulation was found to have a pleasant taste and mouth feel and they disintegrated in the oral cavity within 12 sec. The stability results were also satisfactory. A pharmacokinetic study with the optimized formulation was performed in comparison with a reference (Zofer MD 8®) and they were found to be bioequivalent. In conclusion, a cost effective ondansetron orally disintegrating tablet was successfully prepared with acceptable hardness, desirable taste and rapid disintegration in the oral cavity.
    Matched MeSH terms: Drug Compounding
  17. Raju Y P, N H, Chowdary V H, Nair RS, Basha D J, N T
    Artif Cells Nanomed Biotechnol, 2017 Dec;45(8):1539-1547.
    PMID: 27887040 DOI: 10.1080/21691401.2016.1260579
    Research was aimed on microemulsion-based hydrogel for voriconazole. Oleic acid and isopropyl myristate as lipid phases; tween 20: tween 80 as surfactants and PEG600 as cosurfactant were selected to formulate voriconazole microemulsions. The promising microemulsions in terms of zeta potential, pH, viscosity, and drug release were selected and developed into hydrogels using carbopol 934. Resulting microemulsion-based hydrogel (MBH) of voriconazole were evaluated for in vitro diffusion and ex vivo permeation. Antifungal potentials of MBH were assessed against selected fungal strains. Optimal MBH formulations, O6 and O8 had displayed their antifungal potentials with enlarged zone of inhibition against selected fungal strains.
    Matched MeSH terms: Drug Compounding*
  18. Sansila K, Eiamprapai P, Sawangjit R
    Asian Pac J Allergy Immunol, 2020 Sep;38(3):200-207.
    PMID: 30525740 DOI: 10.12932/AP-090618-0331
    BACKGROUND: Nasal saline irrigation has been reported to be effective as an adjunctive therapy for allergic rhinitis (AR), but concerns about adverse events, supply problems, and high costs have limited its widespread clinical use. Aqueous 1.8% sodium chloride solution prepared by patients using drinking water (1.8% self-prepared hypertonic nasal saline irrigation; 1.8% SPHNSI) could solve some of these problems, but its clinical efficacy and safety need to be determined.

    OBJECTIVE: We aimed to compare the efficacy and safety of 1.8% SPHNSI and 0.9% commercial isotonic nasal saline irrigation (0.9% CINSI) in patients with AR.

    METHODS: A randomised, single-blinded, placebo-controlled trial was performed as a pilot study. Seventy-eight patients with AR were included. Each patient was randomised to nasal irrigation with 80 mL of either 1.8% SPHNSI or 0.9% CINSI twice-daily for 4 weeks. Randomised codes were generated using a computer and a block of 4 procedure. The primary outcome was improvement of quality of life scores in Thai patients with allergic rhinoconjunctivitis (Rcq-36). Secondary outcomes were clinical symptoms using total nasal symptom scores (TNSS) and adverse events. All outcomes were assessed by blinded assessors at baseline, week 2, and week 4.

    RESULTS: At week 4, nasal irrigation with 1.8% SPHNSI had significantly improved the Rcq-36 score (54% versus 50%; p < 0.032) and congestion symptom score (96% versus 84%; p < 0.018) compared to nasal irrigation with 0.9% CINSI. Adverse events were comparable for both groups at week 4.

    CONCLUSIONS: This pilot study indicates that regular use of 1.8% SPHNSI in AR patients for 4 weeks is safe and has superior efficacy to 0.9% CINSI for alleviating congestion and improving quality of life scores.

    Matched MeSH terms: Drug Compounding
  19. Lee PM, Lee KH, Siaw YS
    PMID: 8260581
    Aminoacylase I (E.C.3.5.1.14) was immobilized by entrapment in calcium alginate beads coated with polyethyleneimine for the production of L-phenylalanine by the hydrolysis of a racemic mixture of N-acetyl-DL-phenylalanine. The operational stability in terms of batch operation and continuous reaction in packed-bed bioreactor were studied. Kinetic constants, Km and Vmax values of free and immobilized enzymes were studied. Polyethyleneimine treatment was found to enhance the operational stability of the enzyme though its activity was substantially reduced. When polyethyleneimine-coated calcium alginate beads were packed into packed bed bioreactor, it was stable for at least 25 days under continuous operation without appreciable loss of activity.
    Matched MeSH terms: Drug Compounding
  20. Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K
    Biomed Pharmacother, 2018 Oct;106:707-713.
    PMID: 29990862 DOI: 10.1016/j.biopha.2018.06.136
    Psoriasis is a chronic autoimmune skin disorder affecting 2-3% of the world population. It has characteristic features such as increased keratinocyte proliferation and production of inflammatory mediators. The treatment involves various strategies including topical, systemic, phototherapy and biologics. Topical therapies are preferred for mild to moderate psoriasis conditions over the systemic therapies which are ideal in severe disease conditions. The systemic therapies include immunosuppressants, biological agents and recently approved phosphodiesterase-4 (PDE4) inhibitors. There are various limitations associated with the existing therapies where the new findings in the pathogenesis of psoriasis are paving a path for newer therapeutics to target at the molecular level. Various small molecules, PDE-4 inhibitors, biologics, and immunomodulator proved efficacious including the new molecules targeting Janus kinases (JAK) inhibitors that are under investigation. Furthermore, the role of genetic and miRNAs in psoriasis is still not completely explored and may further help in improving the treatment efficacy. This review provides an insight into various emerging therapies along with currently approved treatments for psoriasis.
    Matched MeSH terms: Drug Compounding
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links