Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.
    Nat Commun, 2019 03 08;10(1):1124.
    PMID: 30850636 DOI: 10.1038/s41467-019-08853-3
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  2. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  3. Thong KL, Ang CP
    PMID: 22299444
    Abstract. Salmonella enterica serovar Paratyphi B is known to cause either paratyphoid fever or gastroenteritis. Differentiation of Salmonella ser. Paratyphi B into biotype Java (d-tartrate fermenting, dT+) and biotype Paratyphi B (d-tartrate non-fermenting, dT) is important for Salmonella epidemiology. This study applied a PCR approach to differentiate the two biotypes to augment the conventional biochemical method and to determine the antibiograms and genomic diversity of Malaysian S. Paratyphi B. Among 100 strains tested (clinical, 86; non-humans, 14), only two clinical strains were confirmed as biotype Paratyphi B as indicated by both lead acetate test and PCR. Antibiotic resistance rates were as follows: streptomycin 18%, sulphonamides 13%, ampicillin 10%, chloramphenicol 4%, tetracycline 3%, cefotaxime 2%, cefpodoxime 2%, ceftazidime 2%, gentamicin 1% and trimethoprim 1%. None showed resistance towards amoxicillin-clavulanic acid, ceftiofur, ciprofloxacin, nalidixic acid and trimethoprim-sulphamethoxazole. Seven strains showed multidrug resistance towards 3 or more classes of antimicrobial agents. REP-PCR and PFGE generated 32 and 76 different profiles, respectively. PFGE (D = 0.99) was more discriminative than REP-PCR (D = 0.93) and antimicrobial susceptibility test (D = 0.48) in subtyping the strains. Strains isolated 18 years apart (1982 - 2008) from different localities in Malaysia were clonally related as demonstrated by REP-PCR and PFGE, indicating that these strains were stable and widely distributed. In some clusters, strains isolated from different sources (clinical, food and animal) were grouped together. Thus, biotype Java was the most common biotype of Salmonella ser. Paratyphi B in Malaysia. The PCR approach is highly recommended due to its simplicity, specificity and ease of operation. The level of antimicrobial resistance among Salmonella ser. Paratyphi B remained relatively low in Malaysia but the emergence of resistance to cephalosporins is a cause for concern.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  4. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  5. Ali SA, Chew YW, Omar TC, Azman N
    PLoS One, 2015;10(12):e0144189.
    PMID: 26642325 DOI: 10.1371/journal.pone.0144189
    Maintenance of recombinant plasmid vectors in host bacteria relies on the presence of selection antibiotics in the growth media to suppress plasmid -free segregants. However, presence of antibiotic resistance genes and antibiotics themselves is not acceptable in several applications of biotechnology. Previously, we have shown that FabV-Triclosan selection system can be used to select high and medium copy number plasmid vectors in E. coli. Here, we have extended our previous work and demonstrated that expression vectors containing FabV can be used efficiently to express heterologous recombinant proteins in similar or better amounts in E. coli host when compared with expression vectors containing β-lactamase. Use of small amount of non-antibiotic Triclosan as selection agent in growth medium, enhanced plasmid stability, applicability in various culture media, and compatibility with other selection systems for multiple plasmid maintenance are noteworthy features of FabV-Triclosan selection system.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  6. Forde BM, Ben Zakour NL, Stanton-Cook M, Phan MD, Totsika M, Peters KM, et al.
    PLoS One, 2014;9(8):e104400.
    PMID: 25126841 DOI: 10.1371/journal.pone.0104400
    Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  7. Roberts LW, Harris PNA, Forde BM, Ben Zakour NL, Catchpoole E, Stanton-Cook M, et al.
    Nat Commun, 2020 01 24;11(1):466.
    PMID: 31980604 DOI: 10.1038/s41467-019-14139-5
    Carbapenem-resistant Enterobacteriaceae (CRE) represent an urgent threat to human health. Here we report the application of several complementary whole-genome sequencing (WGS) technologies to characterise a hospital outbreak of blaIMP-4 carbapenemase-producing E. hormaechei. Using Illumina sequencing, we determined that all outbreak strains were sequence type 90 (ST90) and near-identical. Comparison to publicly available data linked all outbreak isolates to a 2013 isolate from the same ward, suggesting an environmental source in the hospital. Using Pacific Biosciences sequencing, we resolved the complete context of the blaIMP-4 gene on a large IncHI2 plasmid carried by all IMP-4-producing strains across different hospitals. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing. Finally, Oxford Nanopore sequencing rapidly resolved the true relationship of subsequent isolates to the initial outbreak. Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  8. Chan XY, Chua KO, How KY, Yin WF, Chan KG
    ScientificWorldJournal, 2014;2014:930727.
    PMID: 25436236 DOI: 10.1155/2014/930727
    Most Pseudomonas putida strains are environmental microorganisms exhibiting a wide range of metabolic capability but certain strains have been reported as rare opportunistic pathogens and some emerged as multidrug resistant P. putida. This study aimed to assess the drug resistance profile of, via whole genome analysis, P. putida strain T2-2 isolated from oral cavity. At the same time, we also compared the nonenvironmental strain with environmentally isolated P. putida. In silico comparative genome analysis with available reference strains of P. putida shows that T2-2 has lesser gene counts on carbohydrate and aromatic compounds metabolisms, which suggested its little versatility. The detection of its edd gene also suggested T2-2's catabolism of glucose via ED pathway instead of EMP pathway. On the other hand, its drug resistance profile was observed via in silico gene prediction and most of the genes found were in agreement with drug-susceptibility testing in laboratory by automated VITEK 2. In addition, the finding of putative genes of multidrug resistance efflux pump and ATP-binding cassette transporters in this strain suggests a multidrug resistant phenotype. In summary, it is believed that multiple metabolic characteristics and drug resistance in P. putida strain T2-2 helped in its survival in human oral cavity.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  9. Khor WC, Puah SM, Koh TH, Tan JAMA, Puthucheary SD, Chua KH
    Microb Drug Resist, 2018 May;24(4):469-478.
    PMID: 29461928 DOI: 10.1089/mdr.2017.0083
    OBJECTIVE: The objective of this study was to examine the species distribution, genetic relatedness, virulence gene profiles, antimicrobial sensitivities, and resistance gene distribution of clinical Aeromonas strains from Singapore and Malaysia.

    METHODS: A total of 210 Aeromonas clinical isolates were investigated: 116 from Singapore General Hospital and 94 archived clinical isolates from University of Malaya Medical Center, Malaysia. The isolates were genetically identified based on the gcat gene screening and the partial sequences of the rpoD housekeeping gene. Genetic relatedness, distribution of 15 virulence genes and 4 beta-lactamase resistance genes, and susceptibility patterns to 11 antimicrobial agents were compared.

    RESULTS: Of the 210 Aeromonas isolates, A. dhakensis-94 (45%) was the dominant species in Singapore and Malaysia. Species composition was similar and enterobacterial repetitive intergenic consensus-PCR did not show genetic relatedness between strains from the two countries. Of the 15 virulence genes, A. dhakensis and A. hydrophila harbored the most compared with other species. Different combinations of 9 virulence genes (exu, fla, lip, eno, alt, dam, hlyA, aexU, and ascV) were present in A. dhakensis, A. hydrophila, and A. veronii from both the countries. Distribution of virulence genes was species and anatomic site related. Majority (>80%) of the strains were susceptible to all antimicrobial agents tested, except amoxicillin and cephalothin. A. dhakensis strains from Malaysia significantly harbored the cphA gene compared with A. dhakensis from Singapore. Multidrug resistance was mostly detected in strains from peritoneal fluids of dialysis patients.

    CONCLUSION: This study revealed A. dhakensis as the dominant species isolated in both geographic regions, and that it carried a high number of virulence genes. It also highlights the geographic-related differences of virulence gene distribution and antimicrobial resistance profiles of clinical Aeromonas strains from Singapore and Malaysia.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  10. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  11. Noordin A, Sapri HF, Mohamad Sani NA, Leong SK, Tan XE, Tan TL, et al.
    J Med Microbiol, 2016 Dec;65(12):1476-1481.
    PMID: 27902380 DOI: 10.1099/jmm.0.000387
    The annual prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in Malaysia has been estimated to be 30 % to 40 % of all S. aureus infections. Nevertheless, data on the antimicrobial resistance and genetic diversity of Malaysian MRSAs remain few. In 2009, we collected 318 MRSA strains from various wards of our teaching hospital located in Kuala Lumpur, the capital city of Malaysia, and performed antimicrobial susceptibility testing on these strains. The strains were then molecularly characterized via staphylococcal cassette chromosome (SCC) mec and virulence gene (cna, sea, seb, sec, sed, see, seg, seh, sei, eta, etb, Panton-Valentine leukocidin and toxic shock syndrome toxin-1) typing; a subset of 49 strains isolated from the intensive care unit was also typed using PFGE. Most strains were found to be resistant to ciprofloxacin (92.5 %), erythromycin (93.4 %) and gentamicin (86.8 %). The majority (72.0 %) of strains were found to harbour SCCmec type III-SCCmercury with the presence of ccrC, and carried the sea+cna gene combination (49.3 %), with cna as the most prevalent virulence gene (94.0 %) detected. We identified four PFGE clusters, with pulsotype C (n=19) as the dominant example in the intensive care unit, where this pulsotype was found to be associated with carriage of SCCmec type III and the sea gene (P=0.05 and P=0.02, respectively). In summary, the dominant MRSA circulating in our hospital in 2009 was a clone that was ciprofloxacin, erythromycin and gentamicin resistant, carried SCCmec type III-SCCmercury with ccrC and also harboured the sea+cna virulence genes. This clone also appears to be the dominant MRSA circulating in major hospitals in Kuala Lumpur.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  12. Salawudeen A, Raji YE, Jibo GG, Desa MNM, Neoh HM, Masri SN, et al.
    Antimicrob Resist Infect Control, 2023 Dec 07;12(1):142.
    PMID: 38062531 DOI: 10.1186/s13756-023-01346-5
    The rising prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase-resistant (ESBL) Klebsiella pneumoniae (K. pneumoniae) is an important global public health challenge. This threat is even more pertinent in clinical settings. Morbidity and mortality associated with this condition are alarming particularly in the developing regions of the world. A comprehensive evaluation of the epidemiology of this phenomenon will assist towards the global effort of reducing its burden. So, this systematic review and meta-analysis was conducted to evaluate the epidemiology of MDR K. pneumoniae in South-Eastern Asia (SEA). The study was done under the PRISMA guidelines and was preceded by the development of a priori protocol. The protocol was then registered in PROSPERO-the public registry for systematic reviews. Seven important outcomes which include the assessment of the overall MDR K. pneumoniae prevalence were designed to be evaluated. A literature search was carried out in five selected electronic databases and 4389 were screened. Of these articles, 21 studies that met the eligibility criteria were included in the review. Relevant data were extracted from the included studies. By conducting a quality effect meta-analysis, the pooled prevalence for MDR and ESBL K. pneumoniae in SEA was estimated at 55% (CI 9-96) and 27% (CI 32-100) respectively. The review also identified ESBL genes types of allodemic situations occurring mostly in respiratory tract infections. The high prevalence of MDR and ESBL K. pneumoniae in this subregion is highly significant and of both public health and clinical relevance. Overall, the findings of this review will assist in the effective prevention and control of this threat in SEA.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  13. Norazah A, Lim VKE, Koh YT, Rohani MY, Zuridah H, Spencer K, et al.
    J Med Microbiol, 2002 Dec;51(12):1113-1116.
    PMID: 12466411 DOI: 10.1099/0022-1317-51-12-1113
    The emergence and spread of multiresistant methicillin-resistant Staphylococcus aureus (MRSA) strains, especially those resistant to fusidic acid and rifampicin, in Malaysian hospitals is of concern. In this study DNA fingerprinting by PFGE was performed on fusidic acid- and rifampicin-resistant isolates from Malaysian hospitals to determine the genetic relatedness of these isolates and their relationship with the endemic MRSA strains. In all, 32 of 640 MRSA isolates from 9 Malaysian hospitals were resistant to fusidic acid and rifampicin. Seven PFGE types (A, ZC, ZI, ZJ, ZK, ZL and ZM) were observed. The commonest type was type ZC, seen in 72% of isolates followed by type A, seen in 13%. Each of the other types (ZI, ZJ, ZK, ZL and ZM) was observed in a single isolate. Each type, even the commonest, was found in only one hospital. This suggests that the resistant strains had arisen from individual MRSA strains in each hospital and not as a result of the transmission of a common clone.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  14. Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS
    Microb Drug Resist, 2017 Jul;23(5):545-555.
    PMID: 27854165 DOI: 10.1089/mdr.2016.0130
    Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23and ISAba1-blaADCand had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-likegenes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  15. Ontsira Ngoyi EN, Atipo Ibara BI, Moyen R, Ahoui Apendi PC, Ibara JR, Obengui O, et al.
    Helicobacter, 2015 Aug;20(4):316-20.
    PMID: 25585658 DOI: 10.1111/hel.12204
    Helicobacter pylori infection is involved in several gastroduodenal diseases which can be cured by antimicrobial treatment. The aim of this study was to determine the prevalence of H. pylori infection and its bacterial resistance to clarithromycin, fluoroquinolones, and tetracycline in Brazzaville, Congo, by using molecular methods.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  16. Jeevajothi Nathan J, Mohd Desa MN, Thong KL, Clarke SC, Masri SN, Md Yasin R, et al.
    Infect Genet Evol, 2014 Jan;21:391-4.
    PMID: 24342879 DOI: 10.1016/j.meegid.2013.11.026
    Streptococcus pneumoniae is an epidemiologically important bacterial pathogen. Recently, we reported the antibiotic susceptibility patterns of a limited collection of pneumococcal isolates in Malaysia with a high prevalence of erythromycin resistant strains. In the present study, 55 of the pneumococcal isolates of serotype 19F were further analysed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The generated genotypic patterns were then correlated with the antibiograms previously reported. Forty-seven different PFGE profiles (PTs) were obtained, showing that the isolates were genetically diverse. MLST identified 16 sequence types (STs) with ST-236 being predominant (58.2%), followed by ST-81 (10.3%). Among the ST-236 isolates, 22 were erythromycin resistant S. pneumoniae (ERSP) and 15 were trimethoprim/sulfamethoxazole (TMP/SMX) resistant, while among ST-81, four isolates were ERSP and two were TMP/SMX resistant. The high prevalence of erythromycin resistant serotype 19F isolates of ST-236 in this study has also been reported in other North and South East Asian countries.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  17. Mohamad N, Amal MNA, Saad MZ, Yasin ISM, Zulkiply NA, Mustafa M, et al.
    BMC Vet Res, 2019 May 28;15(1):176.
    PMID: 31138199 DOI: 10.1186/s12917-019-1907-8
    BACKGROUND: Vibriosis is an important bacterial disease of cultured marine fishes worldwide. However, information on the virulence and antibiotic resistance of Vibrio spp. isolated from fish are scarce. This study investigates the distribution of virulence associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cage-cultured marine fishes in Malaysia.

    RESULTS: A total of 63 Vibrio spp. isolated from 62 cultured marine fishes in various geographical regions in Peninsular Malaysia were analysed. Forty-two of the isolates (66.7%) were positive for all chiA, luxR and vhpA, the virulence genes produced by pathogenic V. harveyi. A total of 62 Vibrio isolates (98%) had tlh gene of V. parahaemolyticus, while flaC gene of V. anguillarum was detected in 43 of isolates (68%). Other virulence genes, including tdh, trh, hlyA and toxRvc were absent from any of the isolates. Multiple antibiotic resistance (MAR) was exhibited in all strains of Harveyi clade, particularly against ampicillin, penicillin, polypeptides, cephems and streptomycin. The MAR index ranged between 0.06 and 0.56, and 75% of the isolates have MAR index of higher than 0.20. Host species and geographical origin showed no correlation with the presence of virulence genes and the antibiotic resistance patterns of Vibrio spp.

    CONCLUSIONS: The study indicates that majority of Vibrio spp. isolated from cultured marine fishes possess virulence genes, but were not associated with human pathogen. However, the antibiotics resistance is a real concern and warrants ongoing surveillance. These findings represent an updated knowledge on the risk of Vibrio spp. to human health, and also provides valuable insight on alternative approaches to combat vibriosis in cultured fish.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  18. Kuan CS, Chan CL, Yew SM, Toh YF, Khoo JS, Chong J, et al.
    PLoS One, 2015;10(6):e0131694.
    PMID: 26110649 DOI: 10.1371/journal.pone.0131694
    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics*
  19. Gautam D, Dolma KG, Khandelwal B, Goyal RK, Mitsuwan W, Pereira MLG, et al.
    Indian J Med Res, 2023 Oct 01;158(4):439-446.
    PMID: 38006347 DOI: 10.4103/ijmr.ijmr_3470_21
    BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii.

    METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR.

    RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-β-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1.

    INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.

    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
  20. Palasubramaniam S, Subramaniam G, Muniandy S, Parasakthi N
    Int J Infect Dis, 2005 May;9(3):170-2.
    PMID: 15840458
    Matched MeSH terms: Drug Resistance, Multiple, Bacterial/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links