Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Habib MA, Ibrahim F, Mohktar MS, Kamaruzzaman SB, Rahmat K, Lim KS
    World Neurosurg, 2016 Apr;88:576-585.
    PMID: 26548833 DOI: 10.1016/j.wneu.2015.10.096
    BACKGROUND: Electroencephalography source imaging (ESI) is a promising tool for localizing the cortical sources of both ictal and interictal epileptic activities. Many studies have shown the clinical usefulness of interictal ESI, but very few have investigated the utility of ictal ESI. The aim of this article is to examine the clinical usefulness of ictal ESI for epileptic focus localization in patients with refractory focal epilepsy, especially extratemporal lobe epilepsy.

    METHODS: Both ictal and interictal ESI were performed by the use of patient-specific realistic forward models and 3 different linear distributed inverse models. Lateralization as well as concordance between ESI-estimated focuses and single-photon emission computed tomography (SPECT) focuses were assessed.

    RESULTS: All the ESI focuses (both ictal and interictal) were found lateralized to the same hemisphere as ictal SPECT focuses. Lateralization results also were in agreement with the lesion sides as visualized on magnetic resonance imaging. Ictal ESI results, obtained from the best-performing inverse model, were fully concordant with the same cortical lobe as SPECT focuses, whereas the corresponding concordance rate is 87.50% in case of interictal ESI.

    CONCLUSIONS: Our findings show that ictal ESI gives fully lateralized and highly concordant results with ictal SPECT and may provide a cost-effective substitute for ictal SPECT.

    Matched MeSH terms: Electroencephalography/methods*
  2. Abualsaud K, Mahmuddin M, Saleh M, Mohamed A
    ScientificWorldJournal, 2015;2015:945689.
    PMID: 25759863 DOI: 10.1155/2015/945689
    Brain status information is captured by physiological electroencephalogram (EEG) signals, which are extensively used to study different brain activities. This study investigates the use of a new ensemble classifier to detect an epileptic seizure from compressed and noisy EEG signals. This noise-aware signal combination (NSC) ensemble classifier combines four classification models based on their individual performance. The main objective of the proposed classifier is to enhance the classification accuracy in the presence of noisy and incomplete information while preserving a reasonable amount of complexity. The experimental results show the effectiveness of the NSC technique, which yields higher accuracies of 90% for noiseless data compared with 85%, 85.9%, and 89.5% in other experiments. The accuracy for the proposed method is 80% when SNR=1 dB, 84% when SNR=5 dB, and 88% when SNR=10 dB, while the compression ratio (CR) is 85.35% for all of the datasets mentioned.
    Matched MeSH terms: Electroencephalography/methods*
  3. Adam A, Shapiai MI, Tumari MZ, Mohamad MS, Mubin M
    ScientificWorldJournal, 2014;2014:973063.
    PMID: 25243236 DOI: 10.1155/2014/973063
    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
    Matched MeSH terms: Electroencephalography/methods*
  4. Al-Qazzaz NK, Ali SH, Ahmad SA, Chellappan K, Islam MS, Escudero J
    ScientificWorldJournal, 2014;2014:906038.
    PMID: 25093211 DOI: 10.1155/2014/906038
    The early detection and classification of dementia are important clinical support tasks for medical practitioners in customizing patient treatment programs to better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Indeed, early diagnosis helps patients to obtain the maximum treatment benefit before significant mental decline occurs. The use of electroencephalogram as a tool for the detection of changes in brain activities and clinical diagnosis is becoming increasingly popular for its capabilities in quantifying changes in brain degeneration in dementia. This paper reviews the role of electroencephalogram as a biomarker based on signal processing to detect dementia in early stages and classify its severity. The review starts with a discussion of dementia types and cognitive spectrum followed by the presentation of the effective preprocessing denoising to eliminate possible artifacts. It continues with a description of feature extraction by using linear and nonlinear techniques, and it ends with a brief explanation of vast variety of separation techniques to classify EEG signals. This paper also provides an idea from the most popular studies that may help in diagnosing dementia in early stages and classifying through electroencephalogram signal processing and analysis.
    Matched MeSH terms: Electroencephalography/methods*
  5. Finsterer J
    Med J Malaysia, 2023 May;78(3):421-426.
    PMID: 37271853
    OBJECTIVES: Severe, acute, respiratory syndromecoronavirus- 2 (SARS-CoV-2) infections can be complicated by central nervous system (CNS) disease. One of the CNS disorders associated with Coronavirus Disease-19 (COVID- 19) is posterior reversible encephalopathy syndrome (PRES). This narrative review summarises and discusses previous and recent findings on SARS-CoV-2 associated PRES.

    METHODS: A literature search was carried out in PubMed and Google Scholar using suitable search terms and reference lists of articles found were searched for further articles.

    RESULTS: By the end of February 2023, 82 patients with SARS-CoV-2 associated PRES were recorded. The latency between the onset of COVID-19 and the onset of PRES ranged from 1 day to 70 days. The most common presentations of PRES were mental deterioration (n=47), seizures (n=46) and visual disturbances (n=18). Elevated blood pressure was reported on admission or during hospitalisation in 48 patients. The most common comorbidities were arterial hypertension, diabetes, hyperlipidemia and atherosclerosis. PRES was best diagnosed by multimodal cerebral magnetic resonance imaging (MRI). Complete recovery was reported in 35 patients and partial recovery in 21 patients, while seven patients died.

    CONCLUSIONS: PRES can be a CNS complication associated with COVID-19. COVID-19 patients with mental dysfunction, seizures or visual disturbances should immediately undergo CNS imaging through multimodal MRI, electroencephalography (EEG) and cerebrospinal fluid (CSF) studies in order not to miss PRES.

    Matched MeSH terms: Electroencephalography/methods
  6. Namazi H, Aghasian E, Ala TS
    Technol Health Care, 2020;28(1):57-66.
    PMID: 31104032 DOI: 10.3233/THC-181579
    Analysis of human brain activity is an important topic in human neuroscience. Human brain activity can be studied by analyzing the electroencephalography (EEG) signal. In this way, scientists have employed several techniques that investigate nonlinear dynamics of EEG signals. Fractal theory as a promising technique has shown its capabilities to analyze the nonlinear dynamics of time series. Since EEG signals have fractal patterns, in this research we analyze the variations of fractal dynamics of EEG signals between four datasets that were collected from healthy subjects with open-eyes and close-eyes conditions, patients with epilepsy who did and patients who did not face seizures. The obtained results showed that EEG signal during seizure has greatest complexity and the EEG signal during the seizure-free interval has lowest complexity. In order to verify the obtained results in case of fractal analysis, we employ approximate entropy, which indicates the randomness of time series. The obtained results in case of approximate entropy certified the fractal analysis results. The obtained results in this research show the effectiveness of fractal theory to investigate the nonlinear structure of EEG signal between different conditions.
    Matched MeSH terms: Electroencephalography/methods*
  7. Ahmad RF, Malik AS, Kamel N, Reza F, Amin HU, Hussain M
    Technol Health Care, 2017;25(3):471-485.
    PMID: 27935575 DOI: 10.3233/THC-161286
    BACKGROUND: Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful.

    METHODS: In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes.

    RESULTS: Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature.

    CONCLUSIONS: The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.

    Matched MeSH terms: Electroencephalography/methods*
  8. Namazi H, Aghasian E, Ala TS
    Technol Health Care, 2019;27(3):233-241.
    PMID: 30829625 DOI: 10.3233/THC-181497
    Brain activity analysis is an important research area in the field of human neuroscience. Moreover, a subcategory in this field is the classification of brain activity in terms of different brain disorders. Since the Electroencephalography (EEG) signal is, in fact, a non-linear time series, employing techniques to investigate its non-linear structure is rather crucial. In this study, we evaluate the non-linear structure of the EEG signal between healthy and schizophrenic adolescents using fractal theory. The results of our analysis revealed that in terms of all recording channels, the EEG signal of healthy subjects is more complex compared to the ones suffering from schizophrenia. The statistical analysis also indicated that there is a significant difference in the complex structure of the EEG signal between these two groups of subjects. We also utilized approximate entropy in our analysis in order to verify the obtained results of the fractal analysis. The result of the entropy analysis suggested that EEG signal for healthy subjects is less random compared to the EEG signal in schizophrenic individuals. In addition, the employed methodology in this research can be further investigated in order to classify the brain activity in terms of other brain disorders, where one can explore how the complex structure of the EEG signal alters between them.
    Matched MeSH terms: Electroencephalography/methods*
  9. Ong LC, Kanaheswari Y, Chandran V, Rohana J, Yong SC, Boo NY
    Singapore Med J, 2009 Jul;50(7):705-9.
    PMID: 19644627
    The early identification of asphyxiated infants at high risk of adverse outcomes and the early selection of those who might benefit from neuroprotective therapies are required. A prospective observational study was conducted to determine if there were any early clinical, neuroimaging or neurophysiological parameters that might predict the outcome in term newborns with asphyxia.
    Matched MeSH terms: Electroencephalography/methods*
  10. Al-Kadi MI, Reaz MB, Ali MA, Liu CY
    Sensors (Basel), 2014;14(7):13046-69.
    PMID: 25051031 DOI: 10.3390/s140713046
    This paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria's value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded from six patients who underwent scoliosis correction surgeries in the Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM) (the Medical center of National University of Malaysia). The combinational signal was tested by power spectral density, cross-correlation function and wavelet coherence. The experimental results show that the system-outputted EEG signals are neatly switched without any substantial changes in the consistency of EEG components. This paper provides an efficient procedure for analyzing EEG signals in order to avoid averaging the channels that lead to redistribution of the noise on both channels, reducing the dimensionality of the EEG features and preparing the best EEG stream for the classification and monitoring stage.
    Matched MeSH terms: Electroencephalography/methods*
  11. Al-Kadi MI, Reaz MB, Ali MA
    Sensors (Basel), 2013;13(5):6605-35.
    PMID: 23686141 DOI: 10.3390/s130506605
    Biosignal analysis is one of the most important topics that researchers have tried to develop during the last century to understand numerous human diseases. Electroencephalograms (EEGs) are one of the techniques which provides an electrical representation of biosignals that reflect changes in the activity of the human brain. Monitoring the levels of anesthesia is a very important subject, which has been proposed to avoid both patient awareness caused by inadequate dosage of anesthetic drugs and excessive use of anesthesia during surgery. This article reviews the bases of these techniques and their development within the last decades and provides a synopsis of the relevant methodologies and algorithms that are used to analyze EEG signals. In addition, it aims to present some of the physiological background of the EEG signal, developments in EEG signal processing, and the effective methods used to remove various types of noise. This review will hopefully increase efforts to develop methods that use EEG signals for determining and classifying the depth of anesthesia with a high data rate to produce a flexible and reliable detection device.
    Matched MeSH terms: Electroencephalography/methods*
  12. Al-Quraishi MS, Elamvazuthi I, Daud SA, Parasuraman S, Borboni A
    Sensors (Basel), 2018 Oct 07;18(10).
    PMID: 30301238 DOI: 10.3390/s18103342
    Electroencephalography (EEG) signals have great impact on the development of assistive rehabilitation devices. These signals are used as a popular tool to investigate the functions and the behavior of the human motion in recent research. The study of EEG-based control of assistive devices is still in early stages. Although the EEG-based control of assistive devices has attracted a considerable level of attention over the last few years, few studies have been carried out to systematically review these studies, as a means of offering researchers and experts a comprehensive summary of the present, state-of-the-art EEG-based control techniques used for assistive technology. Therefore, this research has three main goals. The first aim is to systematically gather, summarize, evaluate and synthesize information regarding the accuracy and the value of previous research published in the literature between 2011 and 2018. The second goal is to extensively report on the holistic, experimental outcomes of this domain in relation to current research. It is systematically performed to provide a wealthy image and grounded evidence of the current state of research covering EEG-based control for assistive rehabilitation devices to all the experts and scientists. The third goal is to recognize the gap of knowledge that demands further investigation and to recommend directions for future research in this area.
    Matched MeSH terms: Electroencephalography/methods*
  13. Shivaraja TR, Remli R, Kamal N, Wan Zaidi WA, Chellappan K
    Sensors (Basel), 2023 Mar 31;23(7).
    PMID: 37050713 DOI: 10.3390/s23073654
    Ambulatory EEGs began emerging in the healthcare industry over the years, setting a new norm for long-term monitoring services. The present devices in the market are neither meant for remote monitoring due to their technical complexity nor for meeting clinical setting needs in epilepsy patient monitoring. In this paper, we propose an ambulatory EEG device, OptiEEG, that has low setup complexity, for the remote EEG monitoring of epilepsy patients. OptiEEG's signal quality was compared with a gold standard clinical device, Natus. The experiment between OptiEEG and Natus included three different tests: eye open/close (EOC); hyperventilation (HV); and photic stimulation (PS). Statistical and wavelet analysis of retrieved data were presented when evaluating the performance of OptiEEG. The SNR and PSNR of OptiEEG were slightly lower than Natus, but within an acceptable bound. The standard deviations of MSE for both devices were almost in a similar range for the three tests. The frequency band energy analysis is consistent between the two devices. A rhythmic slowdown of theta and delta was observed in HV, whereas photic driving was observed during PS in both devices. The results validated the performance of OptiEEG as an acceptable EEG device for remote monitoring away from clinical environments.
    Matched MeSH terms: Electroencephalography/methods
  14. Yahya N, Musa H, Ong ZY, Elamvazuthi I
    Sensors (Basel), 2019 Nov 08;19(22).
    PMID: 31717412 DOI: 10.3390/s19224878
    In this work, an algorithm for the classification of six motor functions from an electroencephalogram (EEG) signal that combines a common spatial pattern (CSP) filter and a continuous wavelet transform (CWT), is investigated. The EEG data comprise six grasp-and-lift events, which are used to investigate the potential of using EEG as input signals with brain computer interface devices for controlling prosthetic devices for upper limb movement. Selected EEG channels are the ones located over the motor cortex, C3, Cz and C4, as well as at the parietal region, P3, Pz and P4. In general, the proposed algorithm includes three main stages, band pass filtering, CSP filtering, and wavelet transform and training on GoogLeNet for feature extraction, feature learning and classification. The band pass filtering is performed to select the EEG signal in the band of 7 Hz to 30 Hz while eliminating artifacts related to eye blink, heartbeat and muscle movement. The CSP filtering is applied on two-class EEG signals that will result in maximizing the power difference between the two-class dataset. Since CSP is mathematically developed for two-class events, the extension to the multiclass paradigm is achieved by using the approach of one class versus all other classes. Subsequently, continuous wavelet transform is used to convert the band pass and CSP filtered signals from selected electrodes to scalograms which are then converted to images in grayscale format. The three scalograms from the motor cortex regions and the parietal region are then combined to form two sets of RGB images. Next, these RGB images become the input to GoogLeNet for classification of the motor EEG signals. The performance of the proposed classification algorithm is evaluated in terms of precision, sensitivity, specificity, accuracy with average values of 94.8%, 93.5%, 94.7%, 94.1%, respectively, and average area under the receiver operating characteristic (ROC) curve equal to 0.985. These results indicate a good performance of the proposed algorithm in classifying grasp-and-lift events from EEG signals.
    Matched MeSH terms: Electroencephalography/methods*
  15. Motlagh F, Ibrahim F, Rashid R, Shafiabady N, Seghatoleslam T, Habil H
    Psychopharmacology (Berl), 2018 Nov;235(11):3273-3288.
    PMID: 30310960 DOI: 10.1007/s00213-018-5035-0
    Methadone as the most prevalent opioid substitution medication has been shown to influence the neurophysiological functions among heroin addicts. However, there is no firm conclusion on acute neuroelectrophysiological changes among methadone-treated subjects as well as the effectiveness of methadone in restoring brain electrical abnormalities among heroin addicts. This study aims to investigate the acute and short-term effects of methadone administration on the brain's electrophysiological properties before and after daily methadone intake over 10 weeks of treatment among heroin addicts. EEG spectral analysis and single-trial event-related potential (ERP) measurements were used to investigate possible alterations in the brain's electrical activities, as well as the cognitive attributes associated with MMN and P3. The results confirmed abnormal brain activities predominantly in the beta band and diminished information processing ability including lower amplitude and prolonged latency of cognitive responses among heroin addicts compared to healthy controls. In addition, the alteration of EEG activities in the frontal and central regions was found to be associated with the withdrawal symptoms of drug users. Certain brain regions were found to be influenced significantly by methadone intake; acute effects of methadone induction appeared to be associative to its dosage. The findings suggest that methadone administration affects cognitive performance and activates the cortical neuronal networks, resulting in cognitive responses enhancement which may be influential in reorganizing cognitive dysfunctions among heroin addicts. This study also supports the notion that the brain's oscillation powers and ERPs can be utilized as neurophysiological indices for assessing the addiction treatment traits.
    Matched MeSH terms: Electroencephalography/methods
  16. Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H
    PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802
    Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
    Matched MeSH terms: Electroencephalography/methods
  17. Zafar R, Dass SC, Malik AS
    PLoS One, 2017;12(5):e0178410.
    PMID: 28558002 DOI: 10.1371/journal.pone.0178410
    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.
    Matched MeSH terms: Electroencephalography/methods*
  18. Darvish Ghanbar K, Yousefi Rezaii T, Farzamnia A, Saad I
    PLoS One, 2021;16(3):e0248511.
    PMID: 33788862 DOI: 10.1371/journal.pone.0248511
    Common spatial pattern (CSP) is shown to be an effective pre-processing algorithm in order to discriminate different classes of motor-based EEG signals by obtaining suitable spatial filters. The performance of these filters can be improved by regularized CSP, in which available prior information is added in terms of regularization terms into the objective function of conventional CSP. Variety of prior information can be used in this way. In this paper, we used time correlation between different classes of EEG signal as the prior information, which is clarified similarity between different classes of signal for regularizing CSP. Furthermore, the proposed objective function can be easily extended to more than two-class problems. We used three different standard datasets to evaluate the performance of the proposed method. Correlation-based CSP (CCSP) outperformed original CSP as well as the existing regularized CSP, Principle Component Cnalysis (PCA) and Fisher Discriminate Analysis (FDA) in both two-class and multi-class scenarios. The simulation results showed that the proposed method outperformed conventional CSP by 6.9% in 2-class and 2.23% in multi-class problem in term of mean classification accuracy.
    Matched MeSH terms: Electroencephalography/methods*
  19. Khorshidtalab A, Salami MJ, Hamedi M
    Physiol Meas, 2013 Nov;34(11):1563-79.
    PMID: 24152422 DOI: 10.1088/0967-3334/34/11/1563
    The tradeoff between computational complexity and speed, in addition to growing demands for real-time BMI (brain-machine interface) systems, expose the necessity of applying methods with least possible complexity. Willison amplitude (WAMP) and slope sign change (SSC) are two promising time-domain features only if the right threshold value is defined for them. To overcome the drawback of going through trial and error for the determination of a suitable threshold value, modified WAMP and modified SSC are proposed in this paper. Besides, a comprehensive assessment of statistical time-domain features in which their effectiveness is evaluated with a support vector machine (SVM) is presented. To ensure the accuracy of the results obtained by the SVM, the performance of each feature is reassessed with supervised fuzzy C-means. The general assessment shows that every subject had at least one of his performances near or greater than 80%. The obtained results prove that for BMI applications, in which a few errors can be tolerated, these combinations of feature-classifier are suitable. Moreover, features that could perform satisfactorily were selected for feature combination. Combinations of the selected features are evaluated with the SVM, and they could significantly improve the results, in some cases, up to full accuracy.
    Matched MeSH terms: Electroencephalography/methods*
  20. Khare SK, Bajaj V, Acharya UR
    Physiol Meas, 2023 Mar 08;44(3).
    PMID: 36787641 DOI: 10.1088/1361-6579/acbc06
    Objective.Schizophrenia (SZ) is a severe chronic illness characterized by delusions, cognitive dysfunctions, and hallucinations that impact feelings, behaviour, and thinking. Timely detection and treatment of SZ are necessary to avoid long-term consequences. Electroencephalogram (EEG) signals are one form of a biomarker that can reveal hidden changes in the brain during SZ. However, the EEG signals are non-stationary in nature with low amplitude. Therefore, extracting the hidden information from the EEG signals is challenging.Approach.The time-frequency domain is crucial for the automatic detection of SZ. Therefore, this paper presents the SchizoNET model combining the Margenau-Hill time-frequency distribution (MH-TFD) and convolutional neural network (CNN). The instantaneous information of EEG signals is captured in the time-frequency domain using MH-TFD. The time-frequency amplitude is converted to two-dimensional plots and fed to the developed CNN model.Results.The SchizoNET model is developed using three different validation techniques, including holdout, five-fold cross-validation, and ten-fold cross-validation techniques using three separate public SZ datasets (Dataset 1, 2, and 3). The proposed model achieved an accuracy of 97.4%, 99.74%, and 96.35% on Dataset 1 (adolescents: 45 SZ and 39 HC subjects), Dataset 2 (adults: 14 SZ and 14 HC subjects), and Dataset 3 (adults: 49 SZ and 32 HC subjects), respectively. We have also evaluated six performance parameters and the area under the curve to evaluate the performance of our developed model.Significance.The SchizoNET is robust, effective, and accurate, as it performed better than the state-of-the-art techniques. To the best of our knowledge, this is the first work to explore three publicly available EEG datasets for the automated detection of SZ. Our SchizoNET model can help neurologists detect the SZ in various scenarios.
    Matched MeSH terms: Electroencephalography/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links