Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Yang B, Zhang R, Leong Bin Abdullah MFI
    Toxicol Lett, 2024 Jan;391:71-85.
    PMID: 38101493 DOI: 10.1016/j.toxlet.2023.12.008
    INTRODUCTION: This systematic review aimed to assess the association between neuropsychiatric effects of substance use and occurrence of ER stress and unfolded protein response (UPR) through comprehensive electronic search of existing literature and review of their findings.

    METHODS: A comprehensive electronic literature search was carried out on research articles published between 1950 to July 2023 through major databases, such as Scopus, Web of Science, Google Scholar, PubMed, PsycINFO, EMBASE, Medline and Cochrane Library.

    RESULTS: A total of 21 research articles were selected for review, which were comprised of sixteen animal studies, four human studies and one study on postmortem human brain samples. The selected studies revealed that alcohol, methamphetamine, cocaine, opioid and kratom exposures contributed to neuropsychiatric effects: such as decline in learning and memory function, executive dysfunction, alcohol, methamphetamine, opioid, and kratom dependence. These effects were associated with activation and persistent of ER stress and UPR with elevation of BiP and CHOP expression and the direction of ER stress is progressing towards the PERK-eIF2α-ATF4-CHOP pathway and neuronal apoptosis and neurodegeneration at various regions of the brain. In addition, regular kratom use in humans also contributed to elevation of p-JNK expression, denoting progress of ER stress towards the IRE1-ASK1-JNK-p-JNK pathway which was linked to kratom use disorder. However, treatment with certain compounds or biological agents could reverse the activation of ER stress.

    CONCLUSIONS: The neuropsychiatric effects of alcohol, methamphetamine, cocaine, opioid and kratom use may be associated with persistent ER stress and UPR.

    Matched MeSH terms: Endoplasmic Reticulum Stress
  2. Tan HK, Muhammad TST, Tan ML
    Toxicol Appl Pharmacol, 2016 06 01;300:55-69.
    PMID: 27049118 DOI: 10.1016/j.taap.2016.03.017
    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  3. Pinkham K, Park DJ, Hashemiaghdam A, Kirov AB, Adam I, Rosiak K, et al.
    Stem Cell Reports, 2019 04 09;12(4):712-727.
    PMID: 30930246 DOI: 10.1016/j.stemcr.2019.02.012
    Inherent plasticity and various survival cues allow glioblastoma stem-like cells (GSCs) to survive and proliferate under intrinsic and extrinsic stress conditions. Here, we report that GSCs depend on the adaptive activation of ER stress and subsequent activation of lipogenesis and particularly stearoyl CoA desaturase (SCD1), which promotes ER homeostasis, cytoprotection, and tumor initiation. Pharmacological targeting of SCD1 is particularly toxic due to the accumulation of saturated fatty acids, which exacerbates ER stress, triggers apoptosis, impairs RAD51-mediated DNA repair, and achieves a remarkable therapeutic outcome with 25%-100% cure rate in xenograft mouse models. Mechanistically, divergent cell fates under varying levels of ER stress are primarily controlled by the ER sensor IRE1, which either promotes SCD1 transcriptional activation or converts to apoptotic signaling when SCD1 activity is impaired. Taken together, the dependence of GSCs on fatty acid desaturation presents an exploitable vulnerability to target glioblastoma.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  4. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
  5. Lau YS, Mustafa MR, Choy KW, Chan SMH, Potocnik S, Herbert TP, et al.
    Sci Rep, 2018 01 29;8(1):1818.
    PMID: 29379034 DOI: 10.1038/s41598-018-19584-8
    Endoplasmic reticulum (ER) stress has been implicated in the development of hypertension 3 through the induction of endothelial impairment. As 3',4'-dihydroxyflavonol (DiOHF) 4 reduces vascular injury caused by ischaemia/reperfusion or diabetes, and flavonols have been demonstrated to attenuate ER stress, we investigated whether DiOHF can protect mice from ER stress-induced endothelial dysfunction. Male C57BLK/6 J mice were injected with tunicamycin to induce ER stress in the presence or absence of either DiOHF or tauroursodeoxycholic acid (TUDCA), an inhibitor of ER stress. Tunicamycin elevated blood pressure and impaired endothelium-dependent relaxation. Moreover, in aortae there was evidence of ER stress, oxidative stress and reduced NO production. This was coincident with increased NOX2 expression and reduced phosphorylation of endothelial nitric oxide synthase (eNOS) on Ser1176. Importantly, the effects of tunicamycin were significantly ameliorated by DiOHF or TUDCA. DiOHF also inhibited tunicamycin-induced ER stress and apoptosis in cultured human endothelial cells (HUVEC). These results provide evidence that ER stress is likely an important initiator of endothelial dysfunction through the induction of oxidative stress and a reduction in NO synthesis and that DiOHF directly protects against ER stress- induced injury. DiOHF may be useful to prevent ER and oxidative stress to preserve endothelial function, for example in hypertension.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  6. Al-Daghestani H, Qaisar R, Al Kawas S, Ghani N, Rani KGA, Azeem M, et al.
    Sci Rep, 2024 Feb 27;14(1):4719.
    PMID: 38413677 DOI: 10.1038/s41598-024-54944-7
    Hindlimb suspension (HLS) mice exhibit osteoporosis of the hindlimb bones and may be an excellent model to test pharmacological interventions. We investigated the effects of inhibiting endoplasmic reticulum (ER) stress with 4-phenyl butyrate (4-PBA) on the morphology, physicochemical properties, and bone turnover markers of hindlimbs in HLS mice. We randomly divided 21 male C57BL/6J mice into three groups, ground-based controls, untreated HLS group and 4-PBA treated group (HLS+4PBA) (100mg/kg/day, intraperitoneal) for 21 days. We investigated histopathology, micro-CT imaging, Raman spectroscopic analysis, and gene expression. Untreated HLS mice exhibited reduced osteocyte density, multinucleated osteoclast-like cells, adipocyte infiltration, and reduced trabecular striations on micro-CT than the control group. Raman spectroscopy revealed higher levels of ER stress, hydroxyproline, non-collagenous proteins, phenylalanine, tyrosine, and CH2Wag as well as a reduction in proteoglycans and adenine. Furthermore, bone alkaline phosphatase and osteocalcin were downregulated, while Cathepsin K, TRAP, and sclerostin were upregulated. Treatment with 4-PBA partially restored normal bone histology, increased collagen crosslinking, and mineralization, promoted anti-inflammatory markers, and downregulated bone resorption markers. Our findings suggest that mitigating ER stress with 4-PBA could be a therapeutic intervention to offset osteoporosis in conditions mimicking hindlimb suspension.
    Matched MeSH terms: Endoplasmic Reticulum Stress
  7. Yeap JW, Ali IAH, Ibrahim B, Tan ML
    Pulm Pharmacol Ther, 2023 Aug;81:102218.
    PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218
    COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology
  8. Murugan D, Lau YS, Lau CW, Lau WC, Mustafa MR, Huang Y
    PLoS One, 2015;10(12):e0145413.
    PMID: 26709511 DOI: 10.1371/journal.pone.0145413
    Angiotensin 1-7 (Ang 1-7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1-7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1-7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1-7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1-7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1-7. In addition, Ang 1-7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1-7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  9. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects
  10. Greenwood M, Greenwood MP, Paton JF, Murphy D
    PLoS One, 2015;10(4):e0124956.
    PMID: 25915053 DOI: 10.1371/journal.pone.0124956
    Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
    Matched MeSH terms: Endoplasmic Reticulum Stress*
  11. Choy KW, Lau YS, Murugan D, Mustafa MR
    PLoS One, 2017;12(5):e0178365.
    PMID: 28562691 DOI: 10.1371/journal.pone.0178365
    Endoplasmic reticulum (ER) stress leads to endothelial dysfunction which is commonly associated in the pathogenesis of several cardiovascular diseases. We explored the vascular protective effects of chronic treatment with paeonol (2'-hydroxy-4'-methoxyacetophenone), the major compound from the root bark of Paeonia suffruticosa on ER stress-induced endothelial dysfunction in mice. Male C57BL/6J mice were injected intraperitoneally with ER stress inducer, tunicamycin (1 mg/kg/week) for 2 weeks to induce ER stress. The animals were co-administered with or without paeonol (20 mg/kg/oral gavage), reactive oxygen species (ROS) scavenger, tempol (20 mg/kg/day) or ER stress inhibitor, tauroursodeoxycholic acid (TUDCA, 150 mg/kg/day) respectively. Blood pressure and body weight were monitored weekly and at the end of treatment, the aorta was isolated for isometric force measurement. Protein associated with ER stress (GRP78, ATF6 and p-eIF2α) and oxidative stress (NOX2 and nitrotyrosine) were evaluated using Western blotting. Nitric oxide (NO) bioavailability were determined using total nitrate/nitrite assay and western blotting (phosphorylation of eNOS protein). ROS production was assessed by en face dihydroethidium staining and lucigenin-enhanced chemiluminescence assay, respectively. Our results revealed that mice treated with tunicamycin showed an increased blood pressure, reduction in body weight and impairment of endothelium-dependent relaxations (EDRs) of aorta, which were ameliorated by co-treatment with either paeonol, TUDCA and tempol. Furthermore, paeonol reduced the ROS level in the mouse aorta and improved NO bioavailability in tunicamycin treated mice. These beneficial effects of paeonol observed were comparable to those produced by TUDCA and tempol, suggesting that the actions of paeonol may involve inhibition of ER stress-mediated oxidative stress pathway. Taken together, the present results suggest that chronic treatment with paeonol preserved endothelial function and normalized blood pressure in mice induced by tunicamycin in vivo through the inhibition of ER stress-associated ROS.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  12. Choy KW, Murugan D, Mustafa MR
    Pharmacol Res, 2018 06;132:119-129.
    PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013
    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  13. Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2019 Apr 25;12(1):181.
    PMID: 31023350 DOI: 10.1186/s13071-019-3429-4
    BACKGROUND: Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect.

    RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.

    CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.

    Matched MeSH terms: Endoplasmic Reticulum Stress
  14. Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, et al.
    Oxid Med Cell Longev, 2021;2021:8830880.
    PMID: 33995826 DOI: 10.1155/2021/8830880
    The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
  15. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: Endoplasmic Reticulum Stress/genetics
  16. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects*
  17. Mustapha S, Mohammed M, Azemi AK, Jatau AI, Shehu A, Mustapha L, et al.
    Molecules, 2021 Jul 19;26(14).
    PMID: 34299638 DOI: 10.3390/molecules26144362
    The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.
    Matched MeSH terms: Endoplasmic Reticulum Stress*
  18. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 05;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
    Matched MeSH terms: Endoplasmic Reticulum Stress/drug effects; Endoplasmic Reticulum Stress/radiation effects
  19. Mohd Zain MZ, Ismail NH, Ahmad N, Sulong S, Karsani SA, Abdul Majid N
    Mol Biol Rep, 2020 Oct;47(10):7735-7743.
    PMID: 32959195 DOI: 10.1007/s11033-020-05848-y
    Telomerase is a cancer promoting ribonucleoprotein complex and is a potential therapeutic target for cancer. In this study, the effects of telomerase downregulation on the whole cell proteome were investigated. Understanding how the effect of downregulation on the whole proteome profile will generate a greater understanding of the possible roles played by telomerase in cancer. Downregulation was achieved by RNA interference (RNAi), targeting the telomerase reverse transcriptase (TERT) subunits of telomerase. Transfection of TERT siRNA downregulates TERT gene expression and induced downregulation of telomerase activity. Investigation of the effect of silencing TERT in telomerase was further validated through proteomic analysis by performing 2-dimension electrophoresis (2DE) coupled with MALDI-TOF/TOF. 12 protein spots in HeLa cells were reported to be significantly differentially expressed with 11 of them were upregulated and 1 downregulated. Through STRING analysis, differentially expressed proteins demonstrated strong associations with endoplasmic reticulum stress marker and mitochondrial energy production marker. In conclusions, the result exhibited novel integrated proteomic response involving endoplasmic reticulum stress and mitochondrial energy production in response to the TERT downregulation in cervical cancer cells.
    Matched MeSH terms: Endoplasmic Reticulum Stress*
  20. Mohd Ropidi MI, Khazali AS, Nor Rashid N, Yusof R
    J Biomed Sci, 2020 Jan 20;27(1):27.
    PMID: 31959174 DOI: 10.1186/s12929-020-0618-6
    Zika virus (ZIKV) belongs to the Flavivirus genus of the Flaviviridae family. It is an arbovirus that can cause congenital abnormalities and is sexually transmissible. A series of outbreaks accompanied by unexpected severe clinical complications have captured medical attention to further characterize the clinical features of congenital ZIKV syndrome and its underlying pathophysiological mechanisms. Endoplasmic reticulum (ER) and ER-related proteins are essential in ZIKV genome replication. This review highlights the subcellular localization of ZIKV to the ER and ZIKV modulation on the architecture of the ER. This review also discusses ZIKV interaction with ER proteins such as signal peptidase complex subunit 1 (SPCS1), ER membrane complex (EMC) subunits, and ER translocon for viral replication. Furthermore, the review covers several important resulting effects of ZIKV infection to the ER and cellular processes including ER stress, reticulophagy, and paraptosis-like death. Pharmacological targeting of ZIKV-affected ER-resident proteins and ER-associated components demonstrate promising signs of combating ZIKV infection and rescuing host organisms from severe neurologic sequelae.
    Matched MeSH terms: Endoplasmic Reticulum Stress/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links