Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Perera D, Yusof MA, Podin Y, Ooi MH, Thao NT, Wong KK, et al.
    Arch Virol, 2007;152(6):1201-8.
    PMID: 17308978
    A phylogenetic analysis of VP1 and VP4 nucleotide sequences of 52 recent CVA16 strains demonstrated two distinct CVA16 genogroups, A and B, with the prototype strain being the only member of genogroup A. CVA16 G-10, the prototype strain, showed a nucleotide difference of 27.7-30.2% and 19.9-25.2% in VP1 and VP4, respectively, in relation to other CVA16 strains, which formed two separate lineages in genogroup B with nucleotide variation of less than 13.4% and less than 16.3% in VP1 and VP4, respectively. Lineage 1 strains circulating before 2000 were later displaced by lineage 2 strains.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  2. Yoke-Fun C, AbuBakar S
    BMC Microbiol, 2006 Aug 30;6:74.
    PMID: 16939656
    BACKGROUND: Human enterovirus 71 (EV-71) is a common causative agent of hand, foot and mouth disease (HFMD). In recent years, the virus has caused several outbreaks with high numbers of deaths and severe neurological complications. Several new EV-71 subgenotypes were identified from these outbreaks. The mechanisms that contributed to the emergence of these subgenotypes are unknown.

    RESULTS: Six EV-71 isolates from an outbreak in Malaysia, in 1997, were sequenced completely. These isolates were identified as EV-71 subgenotypes, B3, B4 and C2. A phylogenetic tree that correlated well with the present enterovirus classification scheme was established using these full genome sequences and all other available full genome sequences of EV-71 and human enterovirus A (HEV-A). Using the 5' UTR, P2 and P3 genomic regions, however, isolates of EV-71 subgenotypes B3 and C4 segregated away from other EV-71 subgenotypes into a cluster together with coxsackievirus A16 (CV-A16/G10) and EV-71 subgenotype C2 clustered with CV-A8. Results from the similarity plot analyses supported the clustering of these isolates with other HEV-A. In contrast, at the same genomic regions, a CV-A16 isolate, Tainan5079, clustered with EV-71. This suggests that amongst EV-71 and CV-A16, only the structural genes were conserved. The 3' end of the virus genome varied and consisted of sequences highly similar to various HEV-A viruses. Numerous recombination crossover breakpoints were identified within the non-structural genes of some of these newer EV-71 subgenotypes.

    CONCLUSION: Phylogenetic evidence obtained from analyses of the full genome sequence supports the possible occurrence of inter-typic recombination involving EV-71 and various HEV-A, including CV-A16, the most common causal agent of HFMD. It is suggested that these recombination events played important roles in the emergence of the various EV-71 subgenotypes.

    Matched MeSH terms: Enterovirus A, Human/genetics
  3. AbuBakar S, Sam IC, Yusof J, Lim MK, Misbah S, MatRahim N, et al.
    Emerg Infect Dis, 2009 Jan;15(1):79-82.
    PMID: 19116058 DOI: 10.3201/eid1501.080264
    Enterovirus 71 (EV71) outbreaks occur periodically in the Asia-Pacific region. In 2006, Brunei reported its first major outbreak of EV71 infections, associated with fatalities from neurologic complications. Isolated EV71 strains formed a distinct lineage with low diversity within subgenogroup B5, suggesting recent introduction and rapid spread within Brunei.
    Matched MeSH terms: Enterovirus A, Human/genetics
  4. Van Tu P, Thao NTT, Perera D, Truong KH, Tien NTK, Thuong TC, et al.
    Emerg Infect Dis, 2007 Nov;13(11):1733-41.
    PMID: 18217559 DOI: 10.3201/eid1311.070632
    During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
    Matched MeSH terms: Enterovirus A, Human/genetics
  5. Lalani S, Masomian M, Poh CL
    Int J Mol Sci, 2021 Aug 15;22(16).
    PMID: 34445463 DOI: 10.3390/ijms22168757
    Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.
    Matched MeSH terms: Enterovirus A, Human/genetics
  6. Lin JY, Shih SR
    J Biomed Sci, 2014;21:18.
    PMID: 24602216 DOI: 10.1186/1423-0127-21-18
    Enterovirus 71 (EV71) is a member of Picornaviridae that causes mild and self-limiting hand, foot, and mouth disease (HFMD). However, EV71 infections can progress to polio-like paralysis, neurogenic pulmonary edema, and fatal encephalitis in infants and young children. Large EV71 outbreaks have been reported in Taiwan, China, Japan, Malaysia, Singapore, and Australia. This virus is considered a critical emerging public health threat. EV71 is an important crucial neurotropic enterovirus for which there is currently no effective antiviral drug or vaccine. The mechanism by which EV71 causes severe central nervous system complications remains unclear. The interaction between the virus and the host is vital for viral replication, virulence, and pathogenicity. SCARB2 or PSGL-1 receptor binding is the first step in the development of viral infections, and viral factors (e.g., 5' UTR, VP1, 3C, 3D, 3' UTR), host factors and environments (e.g., ITAFs, type I IFN) are also involved in viral infections. The tissue tropism and pathogenesis of viruses are determined by a combination of several factors. This review article provides a summary of host and virus factors affecting cell and tissue tropism and the pathogenesis of enteroviruses.
    Matched MeSH terms: Enterovirus A, Human/genetics
  7. Tan CW, Lai JK, Sam IC, Chan YF
    J Biomed Sci, 2014;21:14.
    PMID: 24521134 DOI: 10.1186/1423-0127-21-14
    Enterovirus 71 (EV-71) is the main etiological agent of hand, foot and mouth disease (HFMD). Recent EV-71 outbreaks in Asia-Pacific were not limited to mild HFMD, but were associated with severe neurological complications such as aseptic meningitis and brainstem encephalitis, which may lead to cardiopulmonary failure and death. The absence of licensed therapeutics for clinical use has intensified research into anti-EV-71 development. This review highlights the potential antiviral agents targeting EV-71 attachment, entry, uncoating, translation, polyprotein processing, virus-induced formation of membranous RNA replication complexes, and RNA-dependent RNA polymerase. The strategies for antiviral development include target-based synthetic compounds, anti-rhinovirus and poliovirus libraries screening, and natural compound libraries screening. Growing knowledge of the EV-71 life cycle will lead to successful development of antivirals. The continued effort to develop antiviral agents for treatment is crucial in the absence of a vaccine. The coupling of antivirals with an effective vaccine will accelerate eradication of the disease.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  8. Ch'ng WC, Stanbridge EJ, Ong KC, Wong KT, Yusoff K, Shafee N
    J Med Virol, 2011 Oct;83(10):1783-91.
    PMID: 21837796 DOI: 10.1002/jmv.22198
    Enterovirus 71 (EV71) infection may cause severe neurological complications, particularly in young children. Despite the risks, there are still no commercially available EV71 vaccines. Hence, a candidate vaccine construct, containing recombinant Newcastle disease virus capsids that display an EV71 VP1 fragment (NPt-VP1(1-100) ) protein, was evaluated in a mouse model of EV71 infection. Previously, it was shown that this protein construct provoked a strong immune response in vaccinated adult rabbits. That study, however, did not address the issue of its effectiveness against EV71 infection in young animals. In the present study, EV71 viral challenge in vaccinated newborn mice resulted in more than 40% increase in survival rate. Significantly, half of the surviving mice fully recovered from their paralysis. Histological analysis of all of the surviving mice revealed a complete clearance of EV71 viral antigens from their brains and spinal cords. In hind limb muscles, the amounts of the antigens detected correlated with the degrees of tissue damage and paralysis. Findings from this study provide evidence that immunization with the NPt-VP1(1-100) immunogen in a newborn mouse model confers partial protection against EV71 infection, and also highlights the importance of NPt-VP1(1-100) as a possible candidate vaccine for protection against EV71 infections.
    Matched MeSH terms: Enterovirus A, Human/genetics
  9. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J Virol Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  10. Lazouskaya NV, Palombo EA, Poh CL, Barton PA
    J Virol Methods, 2014 Mar;197:67-76.
    PMID: 24361875 DOI: 10.1016/j.jviromet.2013.12.005
    Enterovirus 71 (EV 71) is a causative agent of mild Hand Foot and Mouth Disease but is capable of causing severe complications in the CNS in young children. Reverse genetics technology is currently widely used to study the pathogenesis of the virus. The aim of this work was to determine and evaluate the factors which can contribute to infectivity of EV 71 RNA transcripts in vitro. Two strategies, overlapping RT-PCR and long distance RT-PCR, were employed to obtain the full-length genome cDNA clones of the virus. The length of the poly(A) tail and the presence of non-viral 3'-terminal sequences were studied in regard to their effects on infectivity of the in vitro RNA transcripts of EV 71 in cell culture. The data revealed that only cDNA clones obtained after long distance RT-PCR were infectious. No differences were observed in virus titres after transfection with in vitro RNA harbouring a poly(A) tail of 18 or 30 adenines in length, irrespective of the non-viral sequences at the 3'-terminus.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  11. Geoghegan JL, Tan le V, Kühnert D, Halpin RA, Lin X, Simenauer A, et al.
    J Virol, 2015 Sep;89(17):8871-9.
    PMID: 26085170 DOI: 10.1128/JVI.00706-15
    Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia.

    IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.

    Matched MeSH terms: Enterovirus A, Human/genetics*
  12. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    Lab Invest, 2020 Sep;100(9):1262-1275.
    PMID: 32601355 DOI: 10.1038/s41374-020-0456-x
    Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
    Matched MeSH terms: Enterovirus A, Human/genetics
  13. Somasundaram B, Chang C, Fan YY, Lim PY, Cardosa J, Lua L
    Methods, 2016 Feb 15;95:38-45.
    PMID: 26410190 DOI: 10.1016/j.ymeth.2015.09.023
    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine.
    Matched MeSH terms: Enterovirus A, Human/genetics
  14. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  15. Wu WH, Kuo TC, Lin YT, Huang SW, Liu HF, Wang J, et al.
    PLoS One, 2013;8(12):e83711.
    PMID: 24391812 DOI: 10.1371/journal.pone.0083711
    Enterovirus 71 (EV71), a causative agent of hand, foot, and mouth disease can be classified into three genotypes and many subtypes. The objectives of this study were to conduct a molecular epidemiological study of EV71 in the central region of Taiwan from 2002-2012 and to test the hypothesis that whether the alternative appearance of different EV71 subtypes in Taiwan is due to transmission from neighboring countries or from re-emergence of pre-existing local strains. We selected 174 EV71 isolates and used reverse transcription-polymerase chain reaction to amplify their VP1 region for DNA sequencing. Phylogenetic analyses were conducted using Neighbor-Joining, Maximum Likelihood and Bayesian methods. We found that the major subtypes of EV71 in Taiwan were B4 for 2002 epidemic, C4 for 2004-2005 epidemic, B5 for 2008-2009 epidemic, C4 for 2010 epidemic and B5 for 2011-2012 epidemic. Phylogenetic analysis demonstrated that the 2002 and 2008 epidemics were associated with EV71 from Malaysia and Singapore; while both 2010 and 2011-2012 epidemics originated from different regions of mainland China including Shanghai, Henan, Xiamen and Gong-Dong. Furthermore, minor strains have been identified in each epidemic and some of them were correlated with the subsequent outbreaks. Therefore, the EV71 infection in Taiwan may originate from pre-existing minor strains or from other regions in Asia including mainland China. In addition, 101 EV71 isolates were selected for the detection of new recombinant strains using the nucleotide sequences spanning the VP1-2A-2B region. No new recombinant strain was found. Analysis of clinical manifestations showed that patients infected with C4 had significantly higher rates of pharyngeal vesicles or ulcers than patients infected with B5. This is the first study demonstrating that different EV 71 genotypes may have different clinical manifestations and the association of EV71 infections between Taiwan and mainland China.
    Matched MeSH terms: Enterovirus A, Human/genetics
  16. Tan CW, Chan YF, Sim KM, Tan EL, Poh CL
    PLoS One, 2012;7(5):e34589.
    PMID: 22563456 DOI: 10.1371/journal.pone.0034589
    Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.
    Matched MeSH terms: Enterovirus A, Human/genetics
  17. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  18. Yee PTI, Tan SH, Ong KC, Tan KO, Wong KT, Hassan SS, et al.
    Sci Rep, 2019 03 18;9(1):4805.
    PMID: 30886246 DOI: 10.1038/s41598-019-41285-z
    Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
    Matched MeSH terms: Enterovirus A, Human/genetics
  19. Chua KB, Chua BH, Lee CS, Chem YK, Ismail N, Kiyu A, et al.
    Malays J Pathol, 2007 Dec;29(2):69-78.
    PMID: 19108398
    All known field isolates of enterovirus 71 (EV71) can be divided into three distinct genogroups (A, B, C) and 10 subgenogroups (A, B1-5, C1-4) based on VP1 gene sequences. We examined VP1 gene sequences of 10, 12 and 11 EV71 strains isolated in peninsular Malaysia during the outbreaks of hand, foot and mouth disease in 1997, 2000 and 2005 respectively. Four EV71 strains isolated in the hand, foot and mouth disease outbreak of 2006 in Sarawak (Malaysian Borneo) were included to describe their genetic relationship. Four subgenogroups (C1, C2, B3 and B4) of EV71 co-circulated and caused the outbreak of hand, foot and mouth disease in peninsular Malaysia in 1997. Two subgenogroups (C1 and B4) were noted to cause the outbreak in 2000. In the 2005 outbreak, besides EV71 strains of subgenogroup C1, EV71 strains belonged to subgenogroup B5 were isolated but formed a cluster which was distinct from EV71 strains of the subgenogroup B5 isolated in 2003. The four EV71 strains isolated from clinical specimens of patients with hand, foot and mouth disease in the Sarawak outbreak in early 2006 also belonged to subgenogroup B5. Phylogenetic analysis of the VP1 gene sequences showed that the four Sarawak EV71 isolates belonged to the same cluster as the EV71 strains that were isolated in peninsular Malaysia as early as May 2005. The data suggested that the EV71 strains causing the outbreak in Sarawak could have originated from peninsular Malaysia.
    Matched MeSH terms: Enterovirus A, Human/genetics*
  20. Chan YF, Wee KL, Chiam CW, Khor CS, Chan SY, Amalina W MZ, et al.
    Trop Biomed, 2012 Sep;29(3):451-66.
    PMID: 23018509 MyJurnal
    Three genomic regions, VP4 capsid, VP1 capsid and 3D RNA polymerase of human enterovirus 71 (EV-71) and coxsackievirus A16 (CV-A16) were sequenced to understand the evolution of these viruses in Malaysia. A total of 42 EV-71 and 36 CV-A16 isolates from 1997- 2008 were sequenced. Despite the presence of many EV-71 subgenotypes worldwide, only subgenotypes B3, B4, B5, C1 and C2 were present in Malaysia. Importation of other subgenotypes such as C3, C4/D and C5 from other countries was infrequent. For CV-A16, the earlier subgenotype B1 was replaced by subgenotypes B2a and the recent B2c. Subgenotype B2a was present throughout the study while B2c only emerged in 2005. No genetic signatures could be attributed to viral virulence suggesting that host factors have a major role in determining the outcome of infection. Only three EV-71 B3 isolates showed non-consistent phylogeny in the 3D RNA polymerase region which indicated occurrence of recombination in EV-71. High genetic diversity was observed in the Malaysian EV-71 but Malaysian CV-A16 showed low genetic diversity in the three genomic regions sequenced. EV-71 showed strong purifying selection, but that occurred to a lesser extent in CV-A16.
    Matched MeSH terms: Enterovirus A, Human/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links