Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Hossain MS, Santhanam A, Nik Norulaini NA, Omar AK
    Waste Manag, 2011 Apr;31(4):754-66.
    PMID: 21186116 DOI: 10.1016/j.wasman.2010.11.008
    The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This article summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.
    Matched MeSH terms: Environmental Pollution/analysis
  2. Keshavarzifard M, Zakaria MP, Hwai TS, Yusuff FF, Mustafa S, Vaezzadeh V, et al.
    Mar Pollut Bull, 2014 Nov 15;88(1-2):366-72.
    PMID: 25173594 DOI: 10.1016/j.marpolbul.2014.08.014
    In this study, the surface sediments of the Malacca and Prai Rivers were analyzed to identify the distributions, and sources of Polycyclic Aromatic Hydrocarbons (PAHs). The total PAH concentrations varied from 716 to 1210 and 1102 to 7938 ng g(-1)dw in the sediments of the Malacca and Prai Rivers, respectively. The PAH concentrations can be classified as moderate and high level of pollution in the sediments of the Malacca and Prai Rivers, respectively. The comparison of PAHs with the Sediment Quality Guidelines (SQGs) indicates that the PAHs in the sediments of the Malacca and Prai Rivers may have the potential to cause adverse toxicity effects on the sampled ecosystems. The diagnostic ratios of individual PAHs indicate both petrogenic- and pyrogenic-origin PAHs with dominance of pyrogenic source in both rivers. These findings demonstrate that the environmental regulations in Malaysia have effectively reduced the input of petrogenic petroleum hydrocarbons into rivers.
    Matched MeSH terms: Environmental Pollution/analysis
  3. Lim KT, Shukor MY, Wasoh H
    Biomed Res Int, 2014;2014:503784.
    PMID: 24696853 DOI: 10.1155/2014/503784
    Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.
    Matched MeSH terms: Environmental Pollution/analysis
  4. Azam M, Khan AQ, Bin Abdullah H, Qureshi ME
    Environ Sci Pollut Res Int, 2016 Apr;23(7):6376-89.
    PMID: 26620862 DOI: 10.1007/s11356-015-5817-4
    The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.
    Matched MeSH terms: Environmental Pollution/analysis
  5. Teh TL, Rahman NN, Shahadat M, Wong YS, Syakir MI, Omar AK
    Environ Monit Assess, 2016 Jul;188(7):404.
    PMID: 27295186 DOI: 10.1007/s10661-016-5394-0
    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.
    Matched MeSH terms: Environmental Pollution/analysis
  6. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S
    Environ Sci Pollut Res Int, 2016 Jul;23(14):13754-88.
    PMID: 27074929 DOI: 10.1007/s11356-016-6457-z
    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).
    Matched MeSH terms: Environmental Pollution/analysis*
  7. Batool S, Rashid SA, Moah MJ, Sarfraz M, Ashraf MA
    J Environ Biol, 2016 09;37(5 Spec No):1125-1134.
    PMID: 29989744
    The sources, distribution, transformation, toxicity and accumulation of persistent organic pollutants (POPs) in aquatic and terrestrial ecosystems have attracted global concern and attention over the last several decades. Although, POPs are toxic, degrade slowly and have a tendency to accumulate in the food chain, they are still widely used worldwide in many fields, such as industrial and agricultural activities. In addition, discharge of POPs into waterways may lead to serious health-related and environmental problems. This review provides an overview of the continental distributions of many types of POPs and the health risks associated with the exposure to POPs in daily life. This review also discusses the distribution of POPs in Malaysia, and the future work that will be conducted in the Klang River, one of the basins subjected to pollution due to development and urbanization.
    Matched MeSH terms: Environmental Pollution/analysis
  8. Wang AJ, Bong CW, Xu YH, Hassan MHA, Ye X, Bakar AFA, et al.
    Mar Pollut Bull, 2017 Dec 15;125(1-2):492-500.
    PMID: 28807422 DOI: 10.1016/j.marpolbul.2017.08.010
    To understand the source-to-sink of pollutants in the Kelantan River estuary and the adjacent shelf area in Malaysia, a total of 42 surface sediment samples were collected in the Kelantan River-estuary-shelf system to analyze for grain size, total organic carbon (TOC) content, Al and heavy metals (Cr, Ni, Cu, Zn, Cd and Pb). The surficial sediments were mainly composed of clayey silt and the TOC content in sediments decreased from the river to the shelf. The surficial sediments experienced Pb pollution; Cr only showed a certain level of pollution in the coastal area of the estuary but not in other areas, and Ni, Cu, Zn, and Cd showed no pollution. The heavy metals mainly originated from natural weathering and erosion of rocks and soils in the catchment and enriched near the river mouth. Total organic carbon can promote the enrichment of heavy metals in sediments.
    Matched MeSH terms: Environmental Pollution/analysis
  9. Sidi N, Aris AZ, Mohamat Yusuff F, Looi LJ, Mokhtar NF
    Mar Pollut Bull, 2018 Jan;126:113-118.
    PMID: 29421077 DOI: 10.1016/j.marpolbul.2017.10.041
    Revealing the potential of seagrass as a bioindicator for metal pollution is important for assessing marine ecosystem health. Trace metal (111Cd, 63Cu, 60Ni, 208Pb, 66Zn) concentrations in the various parts (root, rhizome, and blade) of tape seagrass (Enhalus acoroides) collected from Merambong shoal of Sungai Pulai estuary, Johor Strait, Malaysia were acid-extracted using a microwave digester and analysed via inductively coupled plasma-mass spectrometry (ICP-MS). The ranges of trace metal concentrations (in μgg-1 dry weight) were as follows: Cd (0.05-0.81), Cu (1.62-27.85), Ni (1.89-9.35), Pb (0.69-4.16), and Zn (3.44-35.98). The translocation factor revealed that E. acoroides is a hyperaccumulator plant, as its blades can accumulate high concentrations of Cd, Cu, Ni, and Zn, but not Pb. The plant limits Pb mobility to minimize Pb's toxic impact. Thus, E. acoroides is a potential bioindicator of metal pollution by Cd, Cu, Ni, and Zn in estuarine environments.
    Matched MeSH terms: Environmental Pollution/analysis
  10. Barnett-Itzhaki Z, Esteban López M, Puttaswamy N, Berman T
    Environ Int, 2018 07;116:156-164.
    PMID: 29684824 DOI: 10.1016/j.envint.2018.03.046
    Rapid development and industrialization in Southeast (SE) Asia has led to environmental pollution, potentially exposing the general population to environmental contaminants. Human biomonitoring (HBM), measurement of chemical and/or their metabolites in human tissues and fluids, is an important tool for assessing cumulative exposure to complex mixtures of chemicals and for monitoring chemical exposures in the general population. While there are national HBM programs in several developed countries, there are no such national programs in most of the SE Asian countries. However, in recent years there has been progress in the field of HBM in many of the SE Asian countries. In this review, we present recent HBM studies in five selected SE Asian countries: Bangladesh, Indonesia, Malaysia, Myanmar and Thailand. While there is extensive HBM research in several SE Asian countries, such as Thailand, in other countries HBM studies are limited and focus on traditional environmental pollutants (such as lead, arsenic and mercury). Further development of this field in SE Asia would be benefited by establishment of laboratory capacity, improving quality control and assurance, collaboration with international experts and consortiums, and sharing of protocols and training both for pre-analytical and analytical phases. This review highlights the impressive progress in HBM research in selected SE Asian countries and provides recommendations for development of this field.
    Matched MeSH terms: Environmental Pollution/analysis*
  11. Looi LJ, Aris AZ, Yusoff FM, Isa NM, Haris H
    Environ Geochem Health, 2019 Feb;41(1):27-42.
    PMID: 29982907 DOI: 10.1007/s10653-018-0149-1
    Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
    Matched MeSH terms: Environmental Pollution/analysis
  12. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
    Matched MeSH terms: Environmental Pollution/analysis*
  13. Guzel AE, Okumus İ
    Environ Sci Pollut Res Int, 2020 May;27(15):18157-18167.
    PMID: 32172423 DOI: 10.1007/s11356-020-08317-y
    Pollution haven hypothesis (PHH) has been investigated extensively in the existing literature due to global environmental issues such as global warming and climate change. However, there is still no consensus on whether this hypothesis is valid. Therefore, the aim of this study is to examine the validity of the PHH in ASEAN-5 countries (Indonesia, Malaysia, Philippines, Singapore, and Thailand) covering the period of 1981-2014. It is utilized the up-to-date panel data techniques taking cross-sectional dependence and slope heterogeneity into account to test the relationship. According to the results of CCEMG and AMG estimators, the validity of the PHH is confirmed in ASEAN-5 countries. The increase in foreign direct investments (FDI) increases environmental degradation in these countries. Our additional findings show that the environmental Kuznets curve (EKC) hypothesis (EKC) is also valid in these countries. There is an inverted U shape between economic growth and CO2 emissions. In addition, energy consumption exacerbates CO2 emissions.
    Matched MeSH terms: Environmental Pollution/analysis
  14. An H, Razzaq A, Haseeb M, Mihardjo LWW
    Environ Sci Pollut Res Int, 2021 Feb;28(5):5254-5270.
    PMID: 32960444 DOI: 10.1007/s11356-020-10775-3
    The Belt and Road Initiative (BRI) is closely linked to the ecological sustainability of the infrastructure ventures that intrinsically include the aspects of climate change and pollution. Though there exists literature on the environmental Kuznets curve (EKC) and pollution haven hypothesis (PHH), very few explore the scope in the light of Belt and Road host countries (B&RCs). Therefore, the study examines the income-induced EKC and Chinese outward foreign direct investment (FDI)-based PHH in the multivariate framework of people's connectivity and technology innovation in B&RCs from 2003 to 2018. The outcome of the study reveals that the observed relationship is quantile-dependent, which may disclose misleading results in previous studies using traditional methodologies that address the averages. Utilizing the novel "Method of Moments Quantile Regression (MMQR)" of Machado and Silva (J Econom 213:145-173, 2019), the findings confirm an inverted U-shape association between economic growth and CO2 emissions only at lower to medium emission countries, thus validating the EKC hypothesis. The Chinese outward FDI flows increase carbon emissions at medium to high emission countries, thereby confirming PHH. The findings also indicate that people's connectivity contributes to increasing emissions while innovation mitigates carbon emissions at lower to medium polluted countries. Moreover, the outcomes of Granger causality confirm one-way causality between economic growth and CO2 emissions, between FDI and CO2 emissions, between people's connectivity and CO2 emissions, and between innovation and CO2 emissions. The results offer valuable insight for legislators to counteract CO2 emissions in B&RCs through innovation-led energy conservation in infrastructure projects while adopting green and sustainable financing mechanisms to materialize mega construction projects under the BRI.
    Matched MeSH terms: Environmental Pollution/analysis
  15. Imran M, Khan KB, Zaman K, Musah MB, Sudiapermana E, Aziz ARA, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(30):41000-41015.
    PMID: 33774795 DOI: 10.1007/s11356-021-13630-1
    The pro-poor growth and environmental sustainability are the twin agendas widely discussed in environmental science literature. The technology-embodied growth helps to attain both agendas through knowledge sharing and technology transfer, which trickle down to the poor income group and improve their living standards. Hence, the role of information and communication technologies (ICTs) is deemed crucial in boosting economic growth and is under deep consideration to establish its role in reducing poverty and environmental pollution. The current study examines the long-run relationship between ICTs, poverty reduction, and ecological degradation in Pakistan using time series data from 1975-2018. The short- and long-run parameter estimates were obtained through the Autoregressive Distributed Lag (ARDL) model for robust inferences. The results substantiate the inverted U-shaped Environmental Kuznets Curve relationship between income and emissions with a turning point at US$1000 in the short-run and US$800 in the long-run. The results confirmed the decisive intervention of ICTs factors in the poverty reduction, i.e., computer communications and mobile-telephone-broadband subscriptions support to reduce poverty incidence with the mediation of inbound FDI in a country. As far as income inequality is concerned, it shows that computer services support minimizing income inequality via a channel of high-technology exports in a country. The technology embodied emissions verified in the long-run, where mobile-telephone-broadband subscriptions increase carbon emissions. Finally, mobile-telephone-broadband subscriptions and inbound FDI both are significant contributors to amplify the country's economic growth. The results conclude that poverty reduction and environmental sustainability agenda are achieved by developing green ICT infrastructure in a country.
    Matched MeSH terms: Environmental Pollution/analysis
  16. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
    Matched MeSH terms: Environmental Pollution/analysis*
  17. Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, et al.
    Chemosphere, 2022 Jan;287(Pt 4):132369.
    PMID: 34582930 DOI: 10.1016/j.chemosphere.2021.132369
    Heavy metal pollution remains a global environmental challenge that poses a significant threat to human life. Various methods have been explored to eliminate heavy metal pollutants from the environment. However, most methods are constrained by high expenses, processing duration, geological problems, and political issues. The immobilization of metals, phytoextraction, and biological methods have proven practical in treating metal contaminants from the soil. This review focuses on the general status of heavy metal contamination of soils, including the excessive heavy metal concentrations in crops. The assessment of the recent advanced technologies and future challenges were reviewed. Molecular and genetic mechanisms that allow microbes and plants to collect and tolerate heavy metals were elaborated. Tremendous efforts to remediate contaminated soils have generated several challenges, including the need for remediation methodologies, degrees of soil contamination, site conditions, widespread adoptions and various possibilities occurring at different stages of remediation are discussed in detail.
    Matched MeSH terms: Environmental Pollution/analysis
  18. Faheem M, Hussain S, ArsalanTanveer, Safdar N, Anwer MA
    Environ Sci Pollut Res Int, 2022 Jan;29(5):7393-7405.
    PMID: 34476703 DOI: 10.1007/s11356-021-16231-0
    In this modern era, the global warming issue has been on the front burner of almost all countries including Malaysia. This study utilizing time series data spanning from 1970 to 2018. To this end, a linear and nonlinear autoregressive distributed lag model was conducted to reveal the foreign direct investment-growth-environment nexus. The conclusion validates the existence of the pollution haven hypothesis in Malaysia. Specifically, the empirical results of the linear autoregressive distributed lag model indicate that foreign direct investment and real gross domestic product have a significant positive impact on CO2 emission while carbon damage cost and the interaction term of foreign direct investment and carbon damage cost have a negative impact in the long run and short run. To find the asymmetric behavior of the foreign direct investment our study employed a nonlinear autoregressive distributed lag model. The findings confirmed the asymmetry association of foreign direct investment with CO2 emission. Interestingly, our results of the interaction term in both models are significant with a negative sign that shows the mediating effect of carbon damage cost that converts the positive effect of foreign direct investment on CO2 emission to negative. Thus, it is vital to reinforce the use of significant regulation as the Malaysian economy opens up to attract more foreign direct investment.
    Matched MeSH terms: Environmental Pollution/analysis
  19. Khan SAR, Yu Z, Umar M
    Environ Sci Pollut Res Int, 2022 Mar;29(11):16082-16090.
    PMID: 34643866 DOI: 10.1007/s11356-021-16961-1
    In today's era, the world economy needs to move towards a green transformation. Green total factor productivity provides the judgment about a country or region's ability to achieve long-term sustainable development goals. However, many factors considerably affect green total factor productivity that needs to be explored and clarified. This panel study investigates the link between technological input, environmental policies, governmental involvement, manufacturing and logistics industry cooperation, renewable energy consumption, and green total factor productivity in the context of Chinese's manufacturing and logistics industry. Hypotheses are tested through fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) econometric technique. The study used 12 cities data mainly taken from China Urban Statistical Yearbook (2005-2019) and National Economic and Social Development Statistics Bulletin. The results indicate that technological input, environmental policies, governmental involvement, manufacturing and logistics industry cooperation, and renewable energy consumption are significantly linked to green total factor productivity. The result also implies that the factors mentioned above have a crucial role in the transformation process. Moreover, the current research results will help popularize green total factor productivity and provide a new starting point for reducing non-renewable energy consumption and environmental pollution.
    Matched MeSH terms: Environmental Pollution/analysis
  20. Jiaqi Y, Yang S, Ziqi Y, Tingting L, Teo BSX
    Environ Sci Pollut Res Int, 2022 Apr;29(18):26759-26774.
    PMID: 34859343 DOI: 10.1007/s11356-021-17026-z
    Climate change and tourism's interaction and vulnerability have been among the most hotly debated topics recently. In this context, the study focuses on how CO2 emissions, the primary cause of global warming and climate change, respond to changes in tourism development. In order to do so, the impact of tourism development on CO2 emissions in the most visited countries is investigated. A panel data from 2000 to 2017 for top 70 tourist countries are analysed using a spatial econometric method to investigate the spatial effect of tourism on environmental pollution. The direct, indirect, and overall impact of tourism on CO2 emissions are estimated using the most appropriate generalized nested spatial econometric (GNS) method. The findings reveal that tourism has a positive direct effect and a negative indirect effect; both are significant at the 1% level. The negative indirect effect of tourism is greater than its direct positive effect, implying an overall significantly negative impact. Further, the outcome of financial development and CO2 emissions have an inverted U-shaped and U-shaped relationship in direct and indirect impacts. Population density, trade openness, and economic growth significantly influence environmental pollution. In addition, education expenditure and infrastructure play a significant moderating role among tourism and environmental pollution. The results have important policy implications as they establish an inverted-U-shaped relationship among tourism and CO2 emissions and indicate that while a country's emissions initially rise with the tourism industry's growth, it begins declining after a limit.
    Matched MeSH terms: Environmental Pollution/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links