Insect-based food or ingredients have received tremendous attention worldwide because of their potential to ensure food and nutrition security, mitigating the reliance on land-dependent agricultural products. Indeed, insect-farming has low environmental impacts with reduced land, water and energy input. More importantly, insects are rich in high quality proteins and fats. They are also excellent sources of minerals, vitamins and bioactive compounds. Insect-based lipids are intriguing because they may contain high levels of unsaturated fatty acids particularly linoleic and α-linolenic acids. Besides, the insect-based lipids also show a considerable amount of bioactive components such as tocols, sterols and carotenoids. However, their fatty acid compositions and the nutritional values may vary depending on species, feed composition, developmental stage, geographical locations, and extraction techniques. Therefore, the present article aims to provide a comprehensive review on the fatty acid composition, the minor bioactive constituents and the physicochemical properties of fats and oils derived from insects of different orders (Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, Hemiptera and Diptera). The various parameters affecting the nutritional compositions of the insect-based lipids will also be highlighted. These information will definitely provide a detailed insight on the potential applications of these fats in various food systems based on their unique properties.
Although numerous studies in aquatic organisms have linked lipid metabolism with intestinal bacterial structure, the possibility of the gut microbiota participating in the biosynthesis of beneficial long-chain polyunsaturated fatty acid (LC-PUFA) remains vague. We profiled the gut microbiota of the mud crab Scylla olivacea fed with either a LC-PUFA rich (FO) or a LC-PUFA-poor but C18-PUFA substrate-rich (LOCO) diet. Additionally, a diet with a similar profile as LOCO but with the inclusion of an antibiotic, oxolinic acid (LOCOAB), was also used to further demarcate the possibility of LC-PUFA biosynthesis in gut microbiota. Compared to diet FO treatment, crabs fed diet LOCO contained a higher proportion of Proteobacteria, notably two known taxonomy groups with PUFA biosynthesis capacity, Vibrio and Shewanella. Annotation of metagenomic datasets also revealed enrichment in the KEGG pathway of unsaturated fatty acid biosynthesis and polyketide synthase-like system sequences with this diet. Intriguingly, diet LOCOAB impeded the presence of Vibrio and Shewanella and with it, the function of unsaturated fatty acid biosynthesis. However, there was an increase in the function of short-chain fatty acid production, accompanied by a shift towards the abundance of phyla Bacteroidota and Spirochaetota. Collectively, these results exemplified bacterial communities and their corresponding PUFA biosynthesis pathways in the microbiota of an aquatic crustacean species.
The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property.
A feeding study was conducted to investigate how fish protein hydrolysate (FPH) supplementation affected the growth, feed utilization, body composition, and hematology of juvenile giant trevally (Caranx ignobilis Forsskal, 1775). Seven isonitrogenous (52% protein) and isocaloric diets (10% lipid) were formulated, wherein shrimp hydrolysate (SH) and tuna hydrolysate (TH) were used to replace fishmeal at inclusion levels of 0 (control), 30, 60, and 90 g/kg and labeled as control, SH30, SH60, SH90, TH30, TH60, and TH90, respectively. Each diet was fed to triplicate groups of juvenile giant trevally for 8 weeks. The results showed higher final body weight and specific growth rate in fish fed SH30, SH60, TH30, and TH60 than fed control diet. No difference was observed in feed intake, but reduced feed conversion ratio (FCR) was found in fish fed SH30, SH60, TH30, and TH60, demonstrating these diets improved feed utilization. TH90 caused deposition of lipid droplet in the hepatocyte, a sign of liver damage. Total monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), and highly unsaturated fatty acids in fish were not affected by FPH supplementation. Fish fed TH30 showed lower ∑n - 3 PUFA than the fish fed remaining dietary treatments. The elevated serum protein was seen in fish fed control, SH30, SH60, and TH30, demonstrating that these diets were beneficial for the innate immune response in giant trevally. The results indicate that TH and SH could be incorporated into diets of giant trevally at 30-60 g/kg, replacing 7%-13% fishmeal with enhanced growth and health benefits.
Strategic feeding of ammonium and metal ions (Mg(2+), Mn(2+), Fe(3+), Cu(2+), Ca(2+), Co(2+), and Zn(2+)) for enhanced GLA-rich lipid accumulation in C. bainieri 2A1 was established. When cultivated in nitrogen-limited medium, the fungus produced up to 30% lipid (g/g biomass) with 12.9% (g/g lipid) GLA. However, the accumulation of lipid stopped at 48 hours of cultivation although glucose was abundant. This event occurred in parallel to the diminishing activity of malic enzyme (ME), fatty acid synthase (FAS), and ATP citrate lyase (ACL) as well as the depletion of metal ions in the medium. Reinstatement of the enzymes activities was achieved by feeding of ammonium tartrate, but no increment in the lipid content was observed. However, increment in lipid content from 32% to 50% (g/g biomass) with 13.2% GLA was achieved when simultaneous feeding of ammonium, glucose, and metal ions was carried out. This showed that the cessation of lipid accumulation was caused by diminishing activities of the enzymes as well as depletion of the metal ions in the medium. Therefore, strategic feeding of ammonium and metal ions successfully reinstated enzymes activities and enhanced GLA-rich lipid accumulation in C. bainieri 2A1.
The incidence of depression is expected to increase over the next 20 years, and many people will have to deal with it. It has been reported that up to 40% of university students experience levels of depression. Several negative consequences are associated with depression symptoms, such as memory impairment, suicide, and substance abuse. Recently, researchers have been studying possible associations between depression and polyunsaturated fatty acids (PUFAs), which may modify depression symptoms. The aim of the present study was to find an association between PUFA levels and depression among Iranian postgraduate students in Malaysia.
Total lipids were extracted from 22 species of Malaysian fish and the constituent fatty acids were analysed by gas chromatography. Malaysian fish generally contained high levels of saturated fatty acids (range 36-55% total fatty acids) and contained variable amounts of monounsaturates, chiefly palmitic and stearic acids, but only trace levels of 20:1 and 22:1. Unlike fish caught in colder northern hemisphere waters, Malaysian fish were found to contain arachidonic acid (20:4 omega 6, range 2-12%) in addition to the expected eicosapentaenoic acid (20:5 omega 3, range 1-13%) and docosahexaenoic acid (22:6 omega 3, range 6.6-40.4%).
Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
Lates calcarifer, commonly known as the Asian sea bass or barramundi, is an interesting species that has great aquaculture potential in Asia including Malaysia and also Australia. We have investigated essential fatty acid metabolism in this species, focusing on the endogenous highly unsaturated fatty acid (HUFA) synthesis pathway using both biochemical and molecular biological approaches. Fatty acyl desaturase (Fad) and elongase (Elovl) cDNAs were cloned and functional characterization identified them as ∆6 Fad and Elovl5 elongase enzymes, respectively. The ∆6 Fad was equally active toward 18:3n-3 and 18:2n-6, and Elovl5 exhibited elongation activity for C18-20 and C20-22 elongation and a trace of C22-24 activity. The tissue profile of gene expression for ∆6 fad and elovl5 genes, showed brain to have the highest expression of both genes compared to all other tissues. The results of tissue fatty acid analysis showed that the brain contained more docosahexaenoic acid (DHA, 22:6n-3) than flesh, liver and intestine. The HUFA synthesis activity in isolated hepatocytes and enterocytes using [1-(14)C]18:3n-3 as substrate was very low with the only desaturated product detected being 18:4n-3. These findings indicate that L. calcarifer display an essential fatty acid pattern similar to other marine fish in that they appear unable to synthesize HUFA from C18 substrates. High expression of ∆6 fad and elovl5 genes in brain may indicate a role for these enzymes in maintaining high DHA levels in neural tissues through conversion of 20:5n-3.
Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.
There is a lack of understanding on how the environment and trophic niche affect the capability of long-chain polyunsaturated fatty acids (LC-PUFA) in freshwater carnivorous teleost. In this present study, we isolated and functionally characterised a fatty acyl desaturase (Fads) from the striped snakehead Channa striata. Sequence comparison and phylogenetic analysis suggested a Fads2 protein that is closely related to previously characterised Fads2 proteins from freshwater carnivorous and marine herbivorous fish species. We further demonstrated the capacity of Δ6 and Δ5 desaturation activities for this particular desaturase, with highest activities towards the conversion of omega-3 (n-3) polyunsaturated fatty acids (PUFA). Low Δ4 desaturation activity was also detected, although the significance of this at a physiological level remains to be studied. The expression of this striped snakehead Δ6/Δ5 fads2 gene was highest in brain, followed by liver and intestine. In liver, diet fortified with high LC-PUFA concentration impeded the expression of Δ6/Δ5 fads2 gene compared to vegetable oil (VO) based diets. The discovery of Δ6/Δ5 Fads2 desaturase here complements the previous discovery of a Δ4 Fads2 desaturase and an Elovl5 elongase, lending proof to the existence of all the required enzymatic machinery to biosynthesise LC-PUFA from C18 PUFA in a freshwater carnivorous species.