Displaying all 9 publications

  1. Chen WN, Tang KS, Yeong KY
    Curr Neuropharmacol, 2022;20(8):1554-1563.
    PMID: 34951390 DOI: 10.2174/1570159X20666211223124715
    Alzheimer's disease (AD), the most common form of dementia, is pathologically characterized by the deposition of amyloid-β plaques and the formation of neurofibrillary tangles. In a neurodegenerative brain, glucose metabolism is also impaired and considered as one of the key features in AD patients. The impairment causes a reduction in glucose transporters and the uptake of glucose as well as alterations in the specific activity of glycolytic enzymes. Recently, it has been reported that α-amylase, a polysaccharide-degrading enzyme, is present in the human brain. The enzyme is known to be associated with various diseases such as type 2 diabetes mellitus and hyperamylasaemia. With this information at hand, we hypothesize that α-amylase could have a vital role in the demented brains of AD patients. This review aims to shed insight into the possible link between the expression levels of α-amylase and AD. Lastly, we also cover the diverse role of amylase inhibitors and how they could serve as a therapeutic agent to manage or stop AD progression.
    Matched MeSH terms: Glucose/therapeutic use
  2. Chin M, Chin F
    Med J Malaysia, 1973 Mar;27(3):195-7.
    PMID: 4268923
    Matched MeSH terms: Glucose/therapeutic use*
  3. Choy C, Lim LY, Chan LW, Cui Z, Mao S, Wong TW
    Pharmacol Rev, 2022 Oct;74(4):962-983.
    PMID: 36779351 DOI: 10.1124/pharmrev.122.000631
    Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.
    Matched MeSH terms: Glucose/therapeutic use
  4. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Sci Prog, 2020;103(1):36850419886448.
    PMID: 31795844 DOI: 10.1177/0036850419886448
    Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5-20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.
    Matched MeSH terms: Glucose/therapeutic use
  5. Lee WS, Lee SP, Boey CCM
    Med J Malaysia, 1999 Mar;54(1):22-5.
    PMID: 10972000
    Two hundred and ninety five children admitted with acute gastroenteritis from January 1, 1996 to December 31, 1996 to the Paediatric unit, University of Malaya Medical Centre, Kuala Lumpur, were reviewed. Eighty-nine percent of children received treatment before admission. Information regarding the type of treatment received were available in 152 (52%) cases. Eighty percent of them were prescribed medications, 40% were prescribed glucose-electrolyte mixtures, and 13% were advised a change of formula. Only 18 children (12%) were advised to take glucose-electrolyte mixtures alone. The four most common prescribed drugs were: antibiotics (43%), antipyretics (39%), antidiarrhoeal agents (30%), and antiemetics (24%). The use of antibiotics, antiemetics and antidiarrhoeal drugs for children with acute gastroenteritis among primary care doctors appears to be common. The use of glucose-electrolyte mixtures was uncommon.
    Matched MeSH terms: Glucose/therapeutic use
  6. Sim R, Chong CW, Loganadan NK, Saidoung P, Adam NL, Hussein Z, et al.
    Value Health Reg Issues, 2023 Nov;38:9-17.
    PMID: 37419012 DOI: 10.1016/j.vhri.2023.05.006
    OBJECTIVES: This study aims to evaluate the cost-effectiveness of various glucose-lowering therapies as add-on to standard care for people with type 2 diabetes (T2D) in Malaysia.

    METHODS: A state-transition microsimulation model was developed to compare the clinical and economic outcomes of 4 treatments: standard care, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter-2 inhibitors (SGLT2is), and glucagon-like peptide-1 receptor agonists. Cost-effectiveness was assessed from a healthcare provider's perspective over a lifetime horizon with 3% discount rate in a hypothetical cohort of people with T2D. Data input were informed from literature and local data when available. Outcome measures include costs, quality-adjusted life-years, incremental cost-effectiveness ratios, and net monetary benefits. Univariate and probabilistic sensitivity analyses were performed to assess uncertainties.

    RESULTS: Over a lifetime horizon, the costs to treat a person with T2D ranged from RM 12 494 to RM 41 250, whereas the QALYs gains ranged from 6.155 to 6.731, depending on the treatment. Based upon a willingness-to-pay threshold of RM 29 080 per QALY, we identified SGLT2i as the most cost-effective glucose-lowering treatment, as add-on to standard care over patient's lifetime, with the net monetary benefit of RM 176 173 and incremental cost-effectiveness ratios of RM 12 279 per QALY gained. The intervention also added 0.577 QALYs and 0.809 LYs compared with standard care. Cost-effectiveness acceptability curve showed that SGLT2i had the highest probability of being cost-effective in Malaysia across varying willingness-to-pay threshold. The results were robust to various sensitivity analyses.

    CONCLUSIONS: SGLT2i was found to be the most cost-effective intervention to mitigate diabetes-related complications.

    Matched MeSH terms: Glucose/therapeutic use
  7. Sinniah D, Sinniah R, Baskaran G, Pathmanathan R, Yamashita F, Yoshino M
    Acta Paediatr Jpn, 1990 Aug;32(4):462-8.
    PMID: 2288230
    Glucose and steroids have been used in the treatment of children with Reye's syndrome, while carnitine and coenzyme Q10 have been the subject of some recent studies which suggest that these agents may have a role in the treatment of Reye's syndrome and Reye-like syndrome due to margosa oil poisoning. Because of the paucity of causes of Reye's syndrome seen at any one centre, the clinical variability of the disease, and limited knowledge of definite aetiologic factors, controlled clinical trials are not easy to carry out or to interpret in human cases. These caveats were overcome by evaluation of these four treatment modalities in an established margosa-oil-induced animal model of Reye's syndrome. Effectiveness of the treatment modalities was determined from clinical response and histopathologic parameters (grading of light microscopic fatty changes and ultrastructural changes in the hepatocytes). Results show that carnitine per se produces a small improvement in survival, but statistically, more significant benefit is seen with glucose administration. Carnitine plus 10% dextrose appears to produce better results. Evaluation of coenzyme Q10 and carnitine on histopathologic parameters in the liver after a sublethal dose of margosa oil showed no obvious ameliorating effect on liver pathology. Steroids (dexamethasone/methylprednisolone) had no beneficial effects in reducing mortality, affecting glycogen storage or lipid accumulation. Changes in the mitochondria, ribosomes and endoplasmic reticulum were unaltered from the groups treated with margosa oil alone. While glucose and carnitine supplements appear to be beneficial, the other modes of therapy do not seem to hold much promise in the treatment of Reye-like syndrome in the margosa-oil-induced animal model.
    Matched MeSH terms: Glucose/therapeutic use*
  8. Tan PC, Norazilah MJ, Omar SZ
    Obstet Gynecol, 2013 Feb;121(2 Pt 1):291-298.
    PMID: 23232754 DOI: 10.1097/AOG.0b013e31827c5e99
    OBJECTIVE: To compare 5% dextrose-0.9% saline against 0.9% saline solution in the intravenous rehydration of hyperemesis gravidarum.

    METHODS: Women at their first hospitalization for hyperemesis gravidarum were enrolled on admission to the ward and randomly assigned to receive either 5% dextrose-0.9% saline or 0.9% saline by intravenous infusion at a rate 125 mL/h over 24 hours in a double-blind trial. All participants also received thiamine and an antiemetic intravenously. Oral intake was allowed as tolerated. Primary outcomes were resolution of ketonuria and well-being (by 10-point visual numerical rating scale) at 24 hours. Nausea visual numerical rating scale scores were obtained every 8 hours for 24 hours.

    RESULTS: Persistent ketonuria rates after the 24-hour study period were 10 of 101 (9.9%) compared with 11 of 101 (10.9%) (P>.99; relative risk 0.9, 95% confidence interval 0.4-2.2) and median (interquartile range) well-being scores at 24 hours were 9 (8-10) compared with 9 (8-9.5) (P=.73) in the 5% dextrose-0.9% saline and 0.9% saline arms, respectively. Repeated measures analysis of variance of the nausea visual numerical rating scale score as assessed every 8 hours during the 24-hour study period showed a significant difference in favor of the 5% dextrose-0.9% saline arm (P=.046) with the superiority apparent at 8 and 16 hours, but the advantage had dissipated by 24 hours. Secondary outcomes of vomiting, resolution of hyponatremia, hypochloremia and hypokalemia, length of hospitalization, duration of intravenous antiemetic, and rehydration were not different.

    CONCLUSIONS: Intravenous rehydration with 5% dextrose-0.9% saline or 0.9% saline solution in women hospitalized for hyperemesis gravidarum produced similar outcomes.

    CLINICAL TRIAL REGISTRATION: ISRCTN Register, www.controlled-trials.com/isrctn, ISRCTN65014409.


    Matched MeSH terms: Glucose/therapeutic use*
  9. Tan PC, Norazilah MJ, Omar SZ
    Obstet Gynecol, 2013 Jun;121(6):1360.
    PMID: 23812475 DOI: 10.1097/AOG.0b013e31829395ef
    Matched MeSH terms: Glucose/therapeutic use*
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links