Displaying all 6 publications

  1. Ahmad AL, Tan LS, Shukor SR
    J Hazard Mater, 2008 Feb 28;151(1):71-7.
    PMID: 17587496
    In order to produce sufficient food supply for the ever-increasing human population, pesticides usage is indispensable in the agriculture sector to control crop losses. However, the effect of pesticides on the environment is very complex as undesirable transfers occur continually among different environmental sections. This eventually leads to contamination of drinking water source especially for rivers located near active agriculture practices. This paper studied the application of nanofiltration membrane in the removal of dimethoate and atrazine in aqueous solution. Dimethoate was selected as the subject of study since it is being listed as one of the pesticides in guidelines for drinking water by World Health Organization. Nevertheless, data on effectiveness of dimethoate rejection using membranes has not been found so far. Meanwhile, atrazine is classified as one of the most commonly used pesticides in Malaysia. Separation was done using a small batch-type membrane separation cell with integrated magnetic stirrer while concentration of dimethoate and atrazine in aqueous solution was analyzed using high performance liquid chromatography (HPLC). Four nanofiltration membranes NF90, NF200, NF270 and DK were tested for their respective performance to separate dimethoate and atrazine. Of all four membranes, NF90 showed the best performance in retention of dimethoate and atrazine in water.
    Matched MeSH terms: Herbicides/isolation & purification*
  2. Sanagi MM, Abbas HH, Ibrahim WA, Aboul-Enien HY
    Food Chem, 2012 Jul 15;133(2):557-62.
    PMID: 25683433 DOI: 10.1016/j.foodchem.2012.01.036
    Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
    Matched MeSH terms: Herbicides/isolation & purification*
  3. Yuzir A, Chelliapan S, Sallis PJ
    Bioresour Technol, 2012 Apr;109:31-7.
    PMID: 22318083 DOI: 10.1016/j.biortech.2012.01.038
    The degradation of (RS)-MCPP was investigated in an anaerobic membrane bioreactor (AnMBR) using nitrate as an available electron acceptor under different COD/NO(3)(-)-N ratios. Results showed high soluble COD removal efficiency (80-93%) when the reactor was operated at high COD/NO(3)(-)-N ratios. However, the COD removal started to decline (average 15%) at high nitrate concentrations coinciding with a drop in nitrate removal efficiency to 37%, suggesting that the denitrification activity dropped and affected the AnMBR performance when nitrate was the predominant electron acceptor. Additionally, the removal efficiency of (RS)-MCPP increased from 2% to 47% with reducing COD/NO(3)(-)-N ratios, whilst the (RS)-MCPP specific utilisation rate (SUR) was inversely proportional to the COD/NO(3)(-)-N ratio, suggesting that a lower COD/NO(3)(-)-N ratios had a positive influence on the (RS)-MCPP SUR. Although nitrate had a major impact on methane production rates, the methane composition was stable (approximately 80%) for COD/NO(3)(-)-N ratios of 23 or more.
    Matched MeSH terms: Herbicides/isolation & purification*
  4. Halimah M, Tan YA, Aini K, Ismail BS
    J Environ Sci Health B, 2003 Jul;38(4):429-40.
    PMID: 12856925
    Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.
    Matched MeSH terms: Herbicides/isolation & purification
  5. Zainuddin NJ, Ashari SE, Salim N, Asib N, Omar D, Lian GEC
    J Oleo Sci, 2019 Aug 01;68(8):747-757.
    PMID: 31292338 DOI: 10.5650/jos.ess18209
    The present study revealed the optimization of nanoemulsion containing palm oil derivatives and Parthenium hysterophorus L. crude extract (PHCE) as pre-emergence herbicide formulation against Diodia ocimifolia. The nanoemulsion formulation was prepared by high energy emulsification method, and it was optimized by mixture experimental design (MED). From the optimization process, analysis of variance (ANOVA) showed a fit quadratic polynomial model with an optimal formulation composition containing 30.91% of palm kernel oil ester (PKOE), 28.48% of mixed surfactants (Tensiofix and Tween 80, 8:2), 28.32% of water and 12.29% of PHCE. The reading of both experimental and predicted particle size in the verification experiment were acceptable with a residual standard error (RSE) was less than 2%. Under the optimal condition, the smallest particle size obtained was 140.10 nm, and the particle was shown by morphology analysis to be spherical and demonstrated good stability (no phase separation) under centrifugation and different storage conditions (25 ± 5°C and 45°C). Nanoemulsion stored for 60 days exhibits monodisperse emulsion with a slight increase of particle size. The increase in particle size over time might have contributed by Ostwald ripening phenomenon which is shown by a linear graph from Ostwald ripening rate analysis. In the in vitro germination test, P. hysterophorus nanoemulsion (PHNE) was shown to cause total inhibition of D. ocimifolia seed at lower concentration (5 g L-1) as compared to PHCE (10 g L-1). The finding of the research could potentially serve as a platform for the development of palm oil based formulation containing plant crude extract for green weed management.
    Matched MeSH terms: Herbicides/isolation & purification
  6. Mamat NA, See HH
    J Chromatogr A, 2017 Jun 30;1504:9-16.
    PMID: 28499598 DOI: 10.1016/j.chroma.2017.05.005
    A new electric-field driven extraction approach based on the integration of a bubbleless electrode into the electromembrane extraction (EME) across hollow polymer inclusion membranes (HPIMs) was demonstrated for the first time. The bubbleless electrode was prepared based on an in-situ synthesised polyacrylamide within a fused silica capillary. The electrode functions as a salt bridge, which conducts the electrical current between the acceptor phase in the lumen of the HPIM and the acceptor solution in the reservoir connected to a high voltage supply through a platinum electrode. Two types of HPIMs were employed, which consisted of desired proportions of cellulose acetate as base polymer, tris(2-ethylhexyl)phosphate as plasticizer, and di-(2-ethylhexyl)phosphoric acid as anionic carrier or Aliquat 336 as cationic carrier, respectively. The EME strategy was evaluated for the simultaneous determination of cationic quaternary ammonium and anionic chlorophenoxy acetic acid herbicides present in the river water, respectively. The analysis was carried out using capillary electrophoresis coupled with UV and contactless conductivity detection. Under the optimised conditions, enrichment factors in the range of 152-185-fold were obtained from 4mL of river water sample with a 20min extraction time and an applied voltage of 3000V. The proposed method provided good linearity with correlation coefficients ranging from 0.9982 to 0.9997 over a concentration range of 1-1000μg/L. The detection limits of the method for the herbicides were in the range of 0.3-0.4μg/L, with relative standard deviations of between 4.8% and 8.5%. The relative recoveries obtained when analysing the spiked river water ranged from 99.1% to 100%. A comparison was also made between the newly developed approach with the conventional EME setup by placing the platinum electrode directly in the lumen of the HPIMs.
    Matched MeSH terms: Herbicides/isolation & purification*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links