Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Zhiping H, Imam MU, Ismail M, Ismail N, Yida Z, Ideris A, et al.
    Food Funct, 2015 May;6(5):1701-11.
    PMID: 25920003 DOI: 10.1039/c5fo00226e
    The aim of this research is to investigate whether edible bird's nest (EBN) attenuates cortical and hippocampal neurodegeneration in ovariectomized rats. Ovariectomized rats were randomly divided into seven experimental groups (n = 6): the ovariectomy (OVX) group had their ovaries surgically removed; the sham group underwent surgical procedure similar to OVX group, but ovaries were left intact; estrogen group had OVX and received estrogen therapy (0.2 mg kg(-1) per day); EBN treatment groups received 6%, 3%, and 1.5% EBN, respectively. Control group was not ovariectomized. After 12 weeks of intervention, biochemical assays were performed for markers of neurodegeneration, and messenger ribonucleic acid (mRNA) levels of oxidative stress-related genes in the hippocampus and frontal cortex of the brain were analysed. Caspase 3 (cysteine-aspartic proteases 3) protein levels in the hippocampus and frontal cortex were also determined using western blotting. The results show that EBNs significantly decreased estrogen deficiency-associated serum elevation of advanced glycation end-products (AGEs), and they changed redox status as evidenced by oxidative damage (malondialdehyde content) and enzymatic antioxidant defense (superoxide dismutase and catalase) markers. Furthermore, genes associated with neurodegeneration and apoptosis were downregulated in the hippocampus and frontal cortex by EBN supplementation. Taken together, the results suggest that EBN has potential for neuroprotection against estrogen deficiency-associated senescence, at least in part via modification of the redox system and attenuation of AGEs.
    Matched MeSH terms: Hippocampus/metabolism*
  2. Zaydi AI, Lew LC, Hor YY, Jaafar MH, Chuah LO, Yap KP, et al.
    Benef Microbes, 2020 Dec 02;11(8):753-766.
    PMID: 33245015 DOI: 10.3920/BM2019.0200
    Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.
    Matched MeSH terms: Hippocampus/metabolism
  3. Yusof HH, Lee HC, Seth EA, Wu X, Hewitt CA, Scott HS, et al.
    J Mol Neurosci, 2019 Apr;67(4):632-642.
    PMID: 30758748 DOI: 10.1007/s12031-019-01275-2
    Notch signalling pathway is involved in the proliferation of neural progenitor cells (NPCs), to inhibit neuronal cell commitment and to promote glial cell fate. Notch protein is cleaved by gamma-secretase, a multisubunit transmembrane protein complex that releases the Notch intracellular domain (NICD) and subsequently activates the downstream targets. Down syndrome (DS) individuals exhibit an increased number of glial cells (particularly astrocytes), and reduced number of neurons suggesting the involvement of Notch signalling pathway in the neurogenic-to-gliogenic shift in DS brain. Ts1Cje is a DS mouse model that exhibit similar neuropathology to human DS individuals. To date, the spatiotemporal gene expression of the Notch and gamma-secretase genes have not been characterised in Ts1Cje mouse brain. Understanding the expression pattern of Notch and gamma-secretase genes may provide a better understanding of the underlying mechanism that leads to the shift. Gene expression analysis using RT-qPCR was performed on early embryonic and postnatal development of DS brain. In the developing mouse brain, mRNA expression analysis showed that gamma-secretase members (Psen1, Pen-2, Aph-1b, and Ncstn) were not differentially expressed. Notch2 was found to be downregulated in the developing Ts1Cje brain samples. Postnatal gene expression study showed complex expression patterns and Notch1 and Notch2 genes were found to be significantly downregulated in the hippocampus at postnatal day 30. Results from RT-qPCR analysis from E15.5 neurosphere culture showed an increase of expression of Psen1, and Aph-1b but downregulation of Pen-2 and Ncstn genes. Gamma-secretase activity in Ts1Cje E15.5 neurospheres was significantly increased by fivefold. In summary, the association and the role of Notch and gamma-secretase gene expression throughout development with neurogenic-to-gliogenic shift in Ts1Cje remain undefined and warrant further validation.
    Matched MeSH terms: Hippocampus/metabolism*
  4. Wong JH, Muthuraju S, Reza F, Senik MH, Zhang J, Mohd Yusuf Yeo NAB, et al.
    Biomed Pharmacother, 2019 Feb;110:168-180.
    PMID: 30469081 DOI: 10.1016/j.biopha.2018.11.044
    Centella asiatica (CA) is a widely used traditional herb, notably for its cognitive enhancing effect and potential to increase synaptogenesis. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory neurotransmission with key roles in long-term potentiation which is believed to be the cellular mechanism of learning and memory. Improved learning and memory can be an indication to the surface expression level of these receptors. Our previous study demonstrated that administration of CA extract improved learning and memory and enhanced expression of AMPAR GluA1 subunit while exerting no significant effects on GABAA receptors of the hippocampus in rats. Hence, to further elucidate the effects of CA, this study investigated the effects of CA extract in recognition memory and spatial memory, and its effects on AMPAR GluA1 and GluA2 subunit and NMDAR GluN2 A and GluN2B subunit expression in the entorhinal cortex (EC) and hippocampal subfields CA1 and CA3. The animals were administered with saline, 100 mg/kg, 300 mg/kg, and 600 mg/kg of CA extract through oral gavage for 14 days, followed by behavioural analysis through Open Field Test (OFT), Novel Object Recognition Task (NORT), and Morris Water Maze (MWM) and lastly morphological and immunohistochemical analysis of the surface expression of AMPAR and NMDAR subunits were performed. The results showed that 14 days of administration of 600 mg/kg of CA extract significantly improved memory assessed through NORT while 300 mg/kg of CA extract significantly improved memory of the animals assessed through MWM. Immunohistochemical analysis revealed differential modulation effects on the expressions of receptor subunits across CA1, CA3 and EC. The CA extract at the highest dose (600 mg/kg) significantly enhanced the expression of AMPAR subunit GluA1 and GluA2 in CA1, CA3 and EC, and NMDAR subunit GluN2B in CA1 and CA3 compared to control. At 300 mg/kg, CA significantly increased expression of AMPAR GluA1 in CA1 and EC, and GluA2 in CA1, CA3 and EC while 100 mg/kg of CA significantly increased expression of only AMPAR subunit GluA2 in CA3 and EC. Expression of NMDAR subunit GluN2 A was significantly reduced in the CA3 (at 100, 300, and 600 mg/kg) while no significant changes of subunit expression was observed in CA1 and EC compared to control. The results suggest that the enhanced learning and memory observed in animals administered with CA was mainly mediated through increased expression of AMPAR GluA1 and GluA2 subunits and differential expression of NMDAR GluN2 A and GluN2B subunits in the hippocampal subfields and EC. With these findings, the study revealed a new aspect of cognitive enhancing effect of CA and its therapeutic potentials through modulating receptor subunit expression.
    Matched MeSH terms: Hippocampus/metabolism*
  5. Tong T, Hao C, Shen J, Liu S, Yan S, Aslam MS, et al.
    Brain Res Bull, 2024 Jan;206:110838.
    PMID: 38123022 DOI: 10.1016/j.brainresbull.2023.110838
    BACKGROUND: Depression is associated with lowered mood, anxiety, anhedonia, cognitive impairments, and even suicidal tendencies in severe cases. Yet few studies have directed acupuncture's mechanism toward enhancing axonal repair correlated with synaptic plasticity and anti-inflammatory effects related to oxidative stress in the hippocampus.

    METHODS: Male Sprague-Dawley (SD) rats were randomly divided into control group (CON), chronic unpredictable mild stress (CUMS) group, CUMS + electroacupuncture group (EA), and CUMS + fluoxetine group (FLX) (n = 10/group). Rats were given a 28-day treatment at the Shangxing (GV23) and Fengfu (GV16) acupoints with electroacupuncture or fluoxetine (2.1 mg/kg).

    RESULTS: Rats exposed to CUMS induced depression-like behaviors and spatial learning-memory impairment, changed the ionized calcium binding adaptor molecule 1 (IBA-1), Vglut1, myelin basic protein (MBP), and postsynaptic density protein 95 (PSD95) level of hippocampal, increased the Nod-like receptor protein 3 (NLRP3), atypical squamous cell (ASC), Caspase level and hippocampal reactive oxygen species (ROS), and prompted the activation of Epha4-mediated signaling and an inflammatory response. Conversely, electroacupuncture administration reduced these changes and prevented depression-like behaviors and cognitive impairment. Electroacupuncture also promoted hippocampal expression of Sirtuin1(SIRT1), Nuclear factor erythroid 2-like (Nrf2), Heme oxygenase-1 (HO-1); reduced the expression of interleukin-1β (IL-1β), interleukin-18 (IL-18), and tumor necrosis factor-alpha (TNF-α); and prevented neural damage, particularly the synaptic myelin sheath, and neuroinflammation by regulating Eph receptor A4 (EphA4) in the hippocampal.

    CONCLUSION: These results indicate that electroacupuncture prevents depression-like behaviors with cognitive impairment and synaptic and neuronal damage, probably by reducing EphA4, which mediates ROS hyperfunction and the inflammatory response.

    Matched MeSH terms: Hippocampus/metabolism
  6. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Hippocampus/metabolism
  7. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    Poult Sci, 2011 Jul;90(7):1427-34.
    PMID: 21673157 DOI: 10.3382/ps.2011-01403
    This study aimed to determine the effect of neonatal feed restriction on plasma corticosterone concentration (CORT), hippocampal glucocorticoid receptor (GR) expression, and heat shock protein (Hsp) 70 expression in aged male Japanese quail subjected to acute heat stress. Equal numbers of chicks were subjected to either ad libitum feeding (AL) or 60% feed restriction on d 4, 5, and 6 (FR). At 21 (young) and 270 (aged) d of age, birds were exposed to 43 ± 1°C for 1 h. Blood and hippocampus samples were collected to determine CORT and Hsp 70 and GR expressions before heat stress and following 1 h of heat stress, 1 h of post-heat stress recovery, and 2 h of post-heat stress recovery. With the use of real-time PCR and enzyme immunoassay, we examined the hippocampal expression of GR and Hsp 70 and CORT. The GR expression of the young birds increased following heat stress and remained consistent throughout the period of recovery. Conversely, no significant changes were noted on GR expression of aged birds. Although both young and aged birds had similar CORT before and during heat stress, the latter exhibited greater values following 1 and 2 h of recovery. Within the young group, feeding regimens had no significant effect on Hsp 70 expression. However, neonatal feed restriction improved Hsp 70 expression in aged birds. Neonatal feed restriction, compared with the AL group, resulted in higher CORT on d 21 but the converse was noted on d 270. Neonatal feed restriction appears to set a robust reactive hypothalamo-pituitary-adrenal response allowing the development of adaptive, healthy, and resilient phenotypes in aged quail as measured by a higher hippocampal Hsp 70 expression along with lower CORT.
    Matched MeSH terms: Hippocampus/metabolism
  8. Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, et al.
    Brain Res, 2024 Mar 01;1826:148715.
    PMID: 38142722 DOI: 10.1016/j.brainres.2023.148715
    BACKGROUND: The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown.

    METHODS: The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus.

    RESULTS: Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1β, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats.

    CONCLUSION: The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.

    Matched MeSH terms: Hippocampus/metabolism
  9. Senthilkumar S, Venugopal C, Parveen S, K S, Rai KS, Kutty BM, et al.
    Neurotoxicology, 2020 12;81:89-100.
    PMID: 32905802 DOI: 10.1016/j.neuro.2020.08.006
    Stem cell therapy provides a ray of hope for treating neurodegenerative diseases (ND). Bone marrow mesenchymal stem cells (BM-MSC) were extensively investigated for their role in neuroregeneration. However, drawbacks like painful bone marrow extraction, less proliferation and poor CNS engraftment following systemic injections of BM-MSC prompt us to search for alternate/appropriate source of MSC for treating ND. In this context, dental pulp stem cells (DPSC) could be an alternative to BM-MSC as it possess both mesenchymal and neural characteristic features due to its origin from ectoderm, ease of isolation, higher proliferation index and better neuroprotection. A study on the migration potential of DPSC compared to BM-MSC in a neurodegenerative condition is warranted. Given the neural crest origin, we hypothesize that DPSC possess better migration towards neurodegenerative milieu as compared to BM-MSC. In this prospect, we investigated the migration potential of DPSC in an in vitro neurodegenerative condition. Towards this, transwell, Matrigel and chorioallantoic membrane (CAM) migration assays were carried-out by seeding hippocampal neurons in the lower chamber and treated with 300 μM kainic acid (KA) for 6 h to induce neurodegeneration. Subsequently, the upper chamber of transwell was loaded with DPSC/BM-MSC and their migration potential was assessed following 24 h of incubation. Our results revealed that the migration potential of DPSC/BM-MSC was comparable in non-degenerative condition. However, following injury the migration potential of DPSC towards the degenerating site was significantly higher as compared to BM-MSC. Furthermore, upon exposure of naïve DPSC/BM-MSCs to culture medium derived from neurodegenerative milieu resulted in significant upregulation of homing factors like SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2 suggesting that the superior migration potential of DPSC might be due to prompt expression of homing factors in DPSC compared to BM-MSCs.
    Matched MeSH terms: Hippocampus/metabolism
  10. Sanchez-Bezanilla S, Åberg ND, Crock P, Walker FR, Nilsson M, Isgaard J, et al.
    Int J Mol Sci, 2020 Jun 26;21(12).
    PMID: 32604953 DOI: 10.3390/ijms21124563
    Cognitive impairment is common after stroke, and disturbances in hippocampal function are often involved, even in remote non-hippocampal injuries. In terms of hippocampal function, growth hormone (GH) is known to affects plasticity and cognition. We aimed to investigate whether GH treatment after an experimental cortical stroke could enhance remote hippocampal plasticity and the hippocampal-dependent visual discrimination task. C57BL6 male mice were subjected to cortical photothrombotic stroke. Stroke mice were then treated with either saline or GH at 48 h after occlusion for 28 days. We assessed learning and memory using mouse touchscreen platform for the visual discrimination task. We also evaluated markers of neural progenitor cells, synaptic plasticity and cerebrovascular remodelling in the hippocampal formation. GH treatment significantly improved the performance on visual discrimination task after stroke. We observed a concomitant increased number of bromodeoxyuridine-positive cells in the dentate gyrus of the hippocampus. We also detected increased protein levels and density of doublecortin, a neuronal precursor cells marker, as well as glutamate receptor 1 (GLuR1), a synaptic marker. These findings provide further neurobiological evidence for how GH treatment could be used to promote hippocampal plasticity in a remote region from the initial cortical injury, and thus enhance cognitive recovery after stroke.
    Matched MeSH terms: Hippocampus/metabolism
  11. Qaid EYA, Abdullah Z, Zakaria R, Long I
    Neurochem Res, 2023 May;48(5):1480-1490.
    PMID: 36509985 DOI: 10.1007/s11064-022-03842-3
    The oxidative stress-induced dysregulation of the cyclic AMP response element-binding protein- brain-derived neurotrophic factor (CREB-BDNF) cascade has been linked to cognitive impairment in several studies. This study aimed to investigate the effect of minocycline on the levels of oxidative stress markers, CREB, and BDNF in lipopolysaccharide (LPS)-induced cognitive impairment. Fifty adult male Sprague Dawley rats were divided randomly into five groups. Group 1 was an untreated control group. Groups 2, 3, 4 and 5 were treated concurrently with LPS (5 mg/kg, i.p) once on day 5 and normal saline (0.7 ml/rat, i.p) or minocycline (25 and 50 mg/kg, i.p) or memantine (10 mg/kg, i.p) once daily from day 1 until day 14, respectively. From day 15 to day 22 of the experiment, Morris Water Maze (MWM) was used to evaluate learning and reference memory in rats. The levels of protein carbonyl (PCO), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were determined by enzyme-linked immunosorbent assay (ELISA). CREB and BDNF expression and density were measured by immunohistochemistry and western blot analysis, respectively. LPS administration significantly increased escape latency to the hidden platform with decreased travelled distance, swimming speed, target crossings and time spent in the target quadrant. Besides, the hippocampal tissue of LPS rats showed increased levels of PCO and MDA, decreased levels of CAT and SOD, and reduced expression and density of BDNF and CREB. Treatment with minocycline reversed these effects in a dose-dependent manner, comparable to the effects of memantine. Both doses of minocycline treatment protect against LPS-induced cognitive impairment by reducing oxidative stress and upregulating the CREB-BDNF signalling pathway in the rat hippocampus.
    Matched MeSH terms: Hippocampus/metabolism
  12. Mohd-Zin SW, Abdullah NL, Abdullah A, Greene ND, Cheah PS, Ling KH, et al.
    Genome, 2016 Jul;59(7):439-48.
    PMID: 27373307 DOI: 10.1139/gen-2015-0142
    The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4(rb-2J/rb-2J), is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or "hopping gait" phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4(rb-2J) corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4(rb-2J) allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein-protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.
    Matched MeSH terms: Hippocampus/metabolism
  13. Mitra NK, Siong HH, Nadarajah VD
    Ann Agric Environ Med, 2008;15(2):211-6.
    PMID: 19061257
    Dermal absorption of chlorpyrifos, an organophosphate insecticide is important because of its use in agriculture and control of household pests. The objectives of this study are to investigate firstly, the biochemical changes in the blood and secondly, histomorphometric changes in the hippocampus of adult mice following dermal application of chlorpyrifos in sub-toxic doses. Male Swiss albino mice (60 days) were segregated into one control and two treated groups (n=10). Chlorpyrifos, diluted with xylene, was applied in doses of 1/2 of LD(50) (E1) and 1/5 of LD(50) (E2) over the tail of mice of the two treated groups, 6 hours daily for 3 weeks. AChE levels in the serum and brain were estimated using a spectrophotometric method (Amplex Red reagent). Coronal serial sections were stained with 0.2 % thionin in acetate buffer and pyramidal neurons of Cornu Ammonis of hippocampus were counted at 400x magnification using Image Pro Express software. At the end of 3 weeks, body weights were reduced significantly in E1 group. Serum AChE concentrations were reduced by 97 % in E1 and 74 % in E2 groups compared to controls. The neurons of CA 3 and CA 1 in the hippocampus showed evidences of morphological damage in both treated groups. Furthermore, the neuronal count was significantly reduced in CA 3 layer of hippocampus in E1 group.
    Matched MeSH terms: Hippocampus/metabolism
  14. Lu GL, Lee MT, Chiou LC
    Addict Biol, 2019 11;24(6):1153-1166.
    PMID: 30276922 DOI: 10.1111/adb.12672
    Orexins (also called hypocretins) are implicated in reward and addiction, but little is known about their role(s) in the association between hippocampal synaptic plasticity and drug preference. Previously, we found that exogenous orexin via OX1 and OX2 receptors can impair low frequency stimulation-induced depotentiation, i.e. restoring potentiation of excitatory synaptic transmission (re-potentiation) in mouse hippocampal slices. Here, we found this re-potentiation in hippocampal slices from mice that had acquired conditioned place preference (CPP) to cocaine. Both 10 and 20 mg/kg of cocaine induced similar magnitudes of CPP in mice and re-potentiation in their hippocampal slices, but differed in their susceptibility to TCS1102, a dual (OX1 and OX2 ) orexin receptor antagonist. TCS1102 significantly attenuated CPP and hippocampal re-potentiation induced by cocaine at 10 mg/kg but not at 20 mg/kg. Nonetheless, SCH23390, an antagonist of dopamine D1-like receptors (D1-likeRs), inhibited the effects induced by both doses of cocaine. SKF38393, a D1-likeR-selective agonist, also induced hippocampal re-potentiation in vitro. Interestingly, this effect was attenuated by TCS1102. Conversely, SCH23390 prevented orexin A-induced hippocampal re-potentiation. These results suggest that endogenous orexins are released in mice during cocaine-CPP acquisition, which sustains potentiated hippocampal transmission via OX1 /OX2 receptors and may contribute to the addiction memory of cocaine. This effect of endogenous orexins, however, may be substituted by dopamine that may dominate hippocampal re-potentiation and CPP via D1-likeRs when the reinforcing effect of cocaine is high.
    Matched MeSH terms: Hippocampus/metabolism
  15. Ling KH, Hewitt CA, Tan KL, Cheah PS, Vidyadaran S, Lai MI, et al.
    BMC Genomics, 2014;15:624.
    PMID: 25052193 DOI: 10.1186/1471-2164-15-624
    The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84.
    Matched MeSH terms: Hippocampus/metabolism
  16. Liew AKY, Teo CH, Soga T
    Mol Neurobiol, 2022 Dec;59(12):7095-7118.
    PMID: 36083518 DOI: 10.1007/s12035-022-03016-w
    Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
    Matched MeSH terms: Hippocampus/metabolism
  17. Li P, Huang W, Chen Y, Aslam MS, Cheng W, Huang Y, et al.
    Neural Plast, 2023;2023:1474841.
    PMID: 37179843 DOI: 10.1155/2023/1474841
    PURPOSE: To explore the therapeutic efficiency of acupuncture and the related molecular mechanism of neural plasticity in depression.

    METHODS: Chronic unpredictable mild stress- (CUMS-) induced rats were established for the depression animal model. There were a total of four rat groups, including the control group, the CUMS group, the CUMS+acupuncture group, and the CUMS+fluoxetine group. The acupuncture group and the fluoxetine group were given a 3-week treatment after the modeling intervention. The researcher performed the open-field, elevated plus maze, and sucrose preference tests to evaluate depressive behaviors. The number of nerve cells, dendrites' length, and the prefrontal cortex's spine density were detected using Golgi staining. The prefrontal cortex expression, such as BDNF, PSD95, SYN, and PKMZ protein, was detected using the western blot and RT-PCR.

    RESULTS: Acupuncture could alleviate depressive-like behaviors and promote the recovery of the neural plasticity functions in the prefrontal cortex, showing the increasing cell numbers, prolonging the length of the dendrites, and enhancing the spine density. The neural plasticity-related proteins in the prefrontal cortex, including BDNF, PSD95, SYN, and PKMZ, were all downregulated in the CUMS-induced group; however, these effects could be partly reversed after being treated by acupuncture and fluoxetine (P < 0.05).

    CONCLUSION: Acupuncture can ameliorate depressive-like behaviors by promoting the recovery of neural plasticity functions and neural plasticity-related protein upregulation in the prefrontal cortex of CUMS-induced depressed rats. Our study provides new insights into the antidepressant approach, and further studies are warranted to elucidate the mechanisms of acupuncture involved in depression treatment.

    Matched MeSH terms: Hippocampus/metabolism
  18. Kurhe Y, Mahesh R, Devadoss T
    Psychopharmacology (Berl), 2017 Apr;234(7):1165-1179.
    PMID: 28238069 DOI: 10.1007/s00213-017-4558-0
    RATIONALE: Depression associated with obesity remains an interesting area to study the biological mechanisms and novel therapeutic intervention.

    OBJECTIVES: The present study investigates the effect of a novel 5-HT3 receptor antagonist 3-methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) on several pathogenic markers of depression associated with obesity such as plasma insulin resistance, hippocampal cyclic adenosine monophosphate (cAMP), brain-derived neurotrophic factor (BDNF), serotonin (5-HT) concentrations, hippocampal neuronal damage, and p53 protein expression in high-fat-diet (HFD)-fed mice.

    METHODS: Obesity was experimentally induced in mice by feeding with HFD for 14 weeks followed by administration of QCM-4 (1 and 2 mg/kg, p.o.)/standard escitalopram (ESC) (10 mg/kg, p.o.)/vehicle (10 ml/kg, p.o.) for 28 days. Behavioral assays such as sucrose preference test (SPT); forced swim test (FST); elevated plus maze (EPM); biochemical assays including oral glucose tolerance tests (OGTT), insulin, cAMP, BDNF, and 5-HT concentrations; and molecular assays mainly histology and immunohistochemistry (IHC) of p53 protein in the dentate gyrus (DG), CA1, and CA3 regions of hippocampus in HFD fed mice were performed.

    RESULTS: Chronic treatment with QCM-4 in HFD-fed mice reversed the behavioral alterations in SPT, FST, and EPM. QCM-4 showed poor sensitivity for plasma glucose, improved insulin sensitivity, increased hippocampal cAMP, BDNF, and 5-HT concentrations. In the hippocampal DG, CA1, and CA3 regions, QCM-4 treatment improved the neuronal morphology in the histopathology and inhibited p53 protein expression in IHC assay in HFD-fed mice.

    CONCLUSION: QCM-4 attenuated the depressive-like phenotype in HFD-fed mice by improving behavioral, biochemical, and molecular alterations through serotonergic neuromodulation.

    Matched MeSH terms: Hippocampus/metabolism
  19. Konuri A, Bhat KMR, Rai KS, Gourishetti K, Phaneendra M YS
    Anat Sci Int, 2021 Mar;96(2):197-211.
    PMID: 32944877 DOI: 10.1007/s12565-020-00574-8
    Cognitive impairment due to natural or surgical menopause is always associated with estrogen deficiency leading to reduced brain-derived neurotrophic factor (BDNF). Reduced BDNF levels in menopause affect neuronal maturation, survival, axonal and dendritic arborization and the maintenance of dendritic spine density. Conventional long-term estrogen replacement therapy reported causing the risk of venous thromboembolism and breast cancer. To overcome these undesirable effects, phytoestrogens have been used in menopause-induced condition without the risk of side effects. Therefore, the aim of the present study was to investigate the effect of dietary supplementation of fenugreek seed extract (FG) either alone or in combination with choline-DHA on BDNF and dendritic arborization of pyramidal neurons in CA1 and CA3 regions of the hippocampus in ovariectomized rats. Female Wistar rats of 9-10 months old were divided into six groups as normal control (NC); ovariectomy (OVX); OVX + FG; OVX + choline-DHA; OVX + FG + choline-DHA; and OVX + estradiol. All the groups, except NC, were ovariectomized. After 2 weeks of ovariectomy, dietary supplementation was initiated for a period of 30 days. After supplementation, behavioral studies, BDNF levels and dendritic arborization were estimated. Ovariectomized (OVX) rats showed reduced BDNF levels, dendritic branching points and dendritic intersections of pyramidal neurons in CA1 and CA3 regions of the hippocampus. OVX rats supplemented with FG with choline-DHA showed significantly improved BDNF levels, dendritic branching points and dendritic intersections. These results are demonstrating that FG with choline-DHA supplementation can be an alternative for estrogen replacement therapy to modulate menopause-induced learning and memory deficits.
    Matched MeSH terms: Hippocampus/metabolism
  20. Khleifat KM, Al-Tawarah NM, Al-Kafaween MA, Al-Ksasbeh W, Qaralleh H, Alqaraleh M, et al.
    Curr Alzheimer Res, 2023;20(3):190-201.
    PMID: 37317907 DOI: 10.2174/1567205020666230614143027
    BACKGROUND/OBJECTIVE: Alzheimer's disease (AD) is mainly characterized by amnesia that affects millions of people worldwide. This study aims to explore the effectiveness capacities of bee venom (BV) for the enhancement of the memory process in a rat model with amnesia-like AD.

    METHODS: The study protocol contains two successive phases, nootropic and therapeutic, in which two BV doses (D1; 0.25 and D2: 0.5 mg/kg i.p.) were used. In the nootropic phase, treatment groups were compared statistically with a normal group. Meanwhile, in the therapeutic phase, BV was administered to scopolamine (1mg/kg) to induce amnesia-like AD in a rat model in which therapeutic groups were compared with a positive group (donepezil; 1mg/kg i.p.). Behavioral analysis was performed after each phase by Working Memory (WM) and Long-Term Memory (LTM) assessments using radial arm maze (RAM) and passive avoidance tests (PAT). Neurogenic factors; Brain-derived neurotrophic factor (BDNF), and Doublecortin (DCX) were measured in plasma using ELISA and Immunohistochemistry analysis of hippocampal tissues, respectively.

    RESULTS: During the nootropic phase, treatment groups demonstrated a significant (P < 0.05) reduction in RAM latency times, spatial WM errors, and spatial reference errors compared with the normal group. In addition, the PA test revealed a significant (P < 0.05) enhancement of LTM after 72 hours in both treatment groups; D1 and D2. In the therapeutic phase, treatment groups reflected a significant (P < 0.05) potent enhancement in the memory process compared with the positive group; less spatial WM errors, spatial reference errors, and latency time during the RAM test, and more latency time after 72 hours in the light room. Moreover, results presented a marked increase in the plasma level of BDNF, as well as increased hippocampal DCX-positive data in the sub-granular zone within the D1 and D2 groups compared with the negative group (P < 0.05) in a dose-dependent manner.

    CONCLUSION: This study revealed that injecting BV enhances and increases the performance of both WM and LTM. Conclusively, BV has a potential nootropic and therapeutic activity that enhances hippocampal growth and plasticity, which in turn improves WM and LTM. Given that this research was conducted using scopolamine-induced amnesia-like AD in rats, it suggests that BV has a potential therapeutic activity for the enhancement of memory in AD patients in a dose-dependent manner but further investigations are needed.

    Matched MeSH terms: Hippocampus/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links