Displaying all 14 publications

Abstract:
Sort:
  1. Gan CS, Wang CW, Tan KS
    Genet. Mol. Res., 2012;11(1):147-52.
    PMID: 22370881 DOI: 10.4238/2012.January.27.1
    Cerebral ischemia or ischemic stroke is mainly attributed to vascular and circulation disorders. Among protein biomarkers, RNA profiles have also been identified as markers of ischemic stroke. MicroRNA-145 expression is ostensibly recognized as marker and modulator of vascular smooth muscle cell phenotype; however, expression levels in ischemic stroke had not been investigated. Employing real-time quantitative PCR, we examined the expression profile of circulatory microRNA-145 in healthy control subjects (N = 14) and ischemic stroke patients (N = 32). Circulatory microRNA-145 expression was significantly higher in ischemic stroke patients than in control subjects. This demonstrates that hemostatic mechanisms are affected by ischemic stroke. We conclude that circulating microRNA-145 has potential as a biomarker for ischemic stroke.
    Matched MeSH terms: Brain Ischemia/physiopathology
  2. Mamidi MK, Pal R, Dey S, Bin Abdullah BJ, Zakaria Z, Rao MS, et al.
    Cytotherapy, 2012 Sep;14(8):902-16.
    PMID: 22731756 DOI: 10.3109/14653249.2012.693156
    Critical limb ischemia (CLI) is a syndrome manifested by ischemic rest pain, non-healing ulcers and tissue loss. CLI patients are at very high risk of amputation and experience poor physical function, leading to severe morbidity and mortality. The fundamental goal for CLI treatment is to relieve ischemic rest pain, heal ulcers, prevent limb loss and improve the quality of life, thereby extending the survival of the patient. Surgical or endovascular revascularization aimed at increasing blood flow is currently available for limb salvage in CLI. However, up to 30% of CLI patients are not suitable for such interventions because of high operative risk or unfavorable vascular anatomy. Therefore exploring new and more effective strategies for revascularization of ischemic limbs is imperative for the establishment of a viable therapeutic alternative. With the emergence of new approaches, this review describes up-to-date progress and developments in cell-based therapy as a novel and promising alternative for CLI treatment. Preliminary clinical data have established the safety, feasibility and efficacy of stem cells, and numerous studies are underway to consolidate this evidence further. However, significant hurdles remain to be addressed before this research can be responsibly translated to the bedside. In particular, we need better understanding of the behavior of cells post-transplantation and to learn how to control their survival and migration proliferation/differentiation in the hostile pathologic environment. Future research should focus on methods of isolation, optimal dosage, appropriate cell type, route of administration, role of tissue-derived factors and supportive endogenous stimulation.
    Matched MeSH terms: Ischemia/physiopathology
  3. Chan BT, Yeoh HK, Liew YM, Dokos S, Al Abed A, Chee KH, et al.
    Coron Artery Dis, 2018 06;29(4):316-324.
    PMID: 29261521 DOI: 10.1097/MCA.0000000000000596
    OBJECTIVE: This study investigated the intraventricular flow dynamics in ischaemic heart disease patients.

    PATIENTS AND METHODS: Fourteen patients with normal ejection fraction and 16 patients with reduced ejection fraction were compared with 20 healthy individuals. Phase-contrast MRI was used to assess intraventricular flow variables and speckle-tracking echocardiography to assess myocardial strain and left ventricular (LV) dyssynchrony. Infarct size was acquired using delayed-enhancement MRI.

    RESULTS: The results obtained showed no significant differences in intraventricular flow variables between the healthy group and the patients with normal ejection fraction group, whereas considerable reductions in kinetic energy (KE) fluctuation index, E' (P<0.001) and vortex KE (P=0.003) were found in the patients with reduced ejection fraction group. In multivariate analysis, only vortex KE and infarct size were significantly related to LV ejection fraction (P<0.001); furthermore, vortex KE was correlated negatively with energy dissipation, energy dissipation index (r=-0.44, P=0.021).

    CONCLUSION: This study highlights that flow energetic indices have limited applicability as early predictors of LV progressive dysfunction, whereas vortex KE could be an alternative to LV performance.

    Matched MeSH terms: Myocardial Ischemia/physiopathology*
  4. Bhatti MS, Tang TB, Chen HC
    Sci Rep, 2018 04 09;8(1):5713.
    PMID: 29632320 DOI: 10.1038/s41598-018-24141-4
    In this study, we reported a new technique based on laser speckle flowgraphy to record the ocular blood flow in rabbits under deep anesthesia, and proposed parameters to characterize retinal ischemia. We applied the proposed technique to study the correlation of blood flow between the eyes of normal non-anesthetized animals, and to characterize the occlusion of the internal carotid artery (ICA) and external carotid artery (ECA). We established a correlation in blood flow between the eyes of non-anesthetized animals, and derived two new parameters, namely, the laterality index and vascular perfusion estimate (VPE). Our experimental results from 16 eyes (of 13 New Zealand white rabbits) showed a reduction in ocular blood flow with a significant decrease in the VPE after the occlusion of the ECA (p ischemia.
    Matched MeSH terms: Ischemia/physiopathology
  5. Hazalin NAMN, Liao P, Hassan Z
    Behav Brain Res, 2020 09 01;393:112781.
    PMID: 32619565 DOI: 10.1016/j.bbr.2020.112781
    Chronic cerebral hypoperfusion (CCH) been well characterized as a common pathological status contributing to neurodegenerative diseases such as Alzheimer's disease and vascular dementia. CCH is an important factor that leads to cognitive impairment, but the underlying neurobiological mechanism is poorly understood and no effective treatment is available. Recently, transient receptor potential melastatin 4 (TRPM4) cation channel has been identified as an important molecular element in focal cerebral ischemia. Over activation of the channel is a major molecular mechanism of oncotic cell death. However, the role of TRPM4 in CCH that propagates global brain hypoxia have not been explored. Therefore, the present study is designed to investigate the effect of TRPM4 inhibition on the cognitive functions of the rats following CCH via permanent bilateral occlusion of common carotid arteries (PBOCCA) model. In this model, treatment with siRNA suppressed TRPM4 expression at both the mRNA and protein levels and improved cognitive deficits of the CCH rats without affecting their motor function. Furthermore, treatment with siRNA rescued the LTP impairment in CCH-induced rats. Consistent with the restored of LTP, western blot analysis revealed that siRNA treatment prevented the reduction of synaptic proteins, including calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and brain-derived neurotrophic factor (BDNF) in brain regions of CCH rats. The present findings provide a novel role of TRPM4 in restricting cognitive functions in CCH and suggest inhibiting TRPM4 may represent a promising therapeutic strategy in targeting ion channels to prevent the progression of cognitive deficits induced by ischemia.
    Matched MeSH terms: Brain Ischemia/physiopathology*
  6. Msayib Y, Harston GWJ, Tee YK, Sheerin F, Blockley NP, Okell TW, et al.
    Neuroimage Clin, 2019;23:101833.
    PMID: 31063943 DOI: 10.1016/j.nicl.2019.101833
    BACKGROUND: Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients, the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and metabolically stressed. Given the potential of APT imaging to complement existing imaging techniques to provide clinically-relevant information, there is a need to develop analysis techniques that deliver a robust and repeatable APT metric. The challenge to accurate quantification of an APT metric has been the heterogeneous in-vivo environment of human tissue, which exhibits several confounding magnetisation transfer effects including spectrally-asymmetric nuclear Overhauser effects (NOEs). The recent literature has introduced various model-free and model-based approaches to analysis that seek to overcome these limitations.

    OBJECTIVES: The objective of this work was to compare quantification techniques for CEST imaging that specifically separate APT and NOE effects for application in the clinical setting. Towards this end a methodological comparison of different CEST quantification techniques was undertaken in healthy subjects, and around clinical endpoints in a cohort of acute stroke patients.

    METHODS: MRI data from 12 patients presenting with ischaemic stroke were retrospectively analysed. Six APT quantification techniques, comprising model-based and model-free techniques, were compared for repeatability and ability for APT to distinguish pathological tissue in acute stroke.

    RESULTS: Robustness analysis of six quantification techniques indicated that the multi-pool model-based technique had the smallest contrast between grey and white matter (2%), whereas model-free techniques exhibited the highest contrast (>30%). Model-based techniques also exhibited the lowest spatial variability, of which 4-pool APTR∗ was by far the most uniform (10% coefficient of variation, CoV), followed by 3-pool analysis (20%). Four-pool analysis yielded the highest ischaemic core contrast-to-noise ratio (0.74). Four-pool modelling of APT effects was more repeatable (3.2% CoV) than 3-pool modelling (4.6% CoV), but this appears to come at the cost of reduced contrast between infarct growth tissue and normal tissue.

    CONCLUSION: The multi-pool measures performed best across the analyses of repeatability, spatial variability, contrast-to-noise ratio, and grey matter-white matter contrast, and might therefore be more suitable for use in clinical imaging of acute stroke. Addition of a fourth pool that separates NOEs and semisolid effects appeared to be more biophysically accurate and provided better separation of the APT signal compared to the 3-pool equivalent, but this improvement appeared be accompanied by reduced contrast between infarct growth tissue and normal tissue.

    Matched MeSH terms: Brain Ischemia/physiopathology
  7. Ramaiah SS, Mitchell P, Dowling R, Yan B
    J Stroke Cerebrovasc Dis, 2014 Mar;23(3):399-407.
    PMID: 23601372 DOI: 10.1016/j.jstrokecerebrovasdis.2013.03.012
    Evidence from recent randomized controlled studies comparing intra-arterial (IA) therapy with intravenous tissue plasminogen activator highlighted the mismatch between recanalization success and clinical outcomes in patients presenting with acute ischemic stroke. There is emerging interest in the impact of arterial collateralization, as determined by leptomeningeal anastomoses (LMAs), on the treatment outcomes of IA therapy. The system of LMA constitutes the secondary network of cerebral collateral circulation apart from the Circle of Willis. Both anatomic and angiographic studies confirmed significant interindividual variability in LMA. This review aims to outline the current understanding of arterial collateralization and its impact on outcomes after IA therapy for acute ischemic stroke, underpinning the possible role of arterial collateralization assessment as a selection tool for patients most likely to benefit from IA therapy.
    Matched MeSH terms: Brain Ischemia/physiopathology
  8. Kulur AB, Haleagrahara N, Adhikary P, Jeganathan PS
    Arq. Bras. Cardiol., 2009 Jun;92(6):423-9, 440-7, 457-63.
    PMID: 19629309
    BACKGROUND: Reduced heart rate variability is associated with an unfavorable prognosis in patients with ischemic heart disease and diabetes. Whether change in breathing pattern can modify the risk factor in these patients has not been definitely proved.
    OBJECTIVE: To evaluate the effect of diaphragmatic breathing on heart rate variability (HRV) in ischemic heart disease patients with diabetes.
    METHODS: Study population consisted of 145 randomly selected male patients of which 45 had ischemic heart disease (IHD), 52 had IHD and diabetes (IHD-DM) and the remaining 48 had IHD and diabetic neuropathy (IHD-DN). HRV was assessed by 5 minute-electrocardiogram using the time domain method. The intervention group was divided into compliant and non-compliant groups and follow-up recording was carried out after three months and one year.
    RESULTS: Baseline recordings showed a significant decrease in HRV in ischemic heart disease (IHD) patients with or without diabetes (p<0.01). IHD patients had higher HRV than IHD patients with diabetes (p<0.01) or diabetic neuropathy (p<0.01). Increase in HRV was observed in patients who practiced diaphragmatic breathing for three months (IHD-DM: p<0.01; IHD-DN: p<0.05) and for one year (IHD-DM: p<0.01; IHD-DN: p<0.01). The HRV significantly decreased after one year in non-compliant patients. The regular practice of diaphragmatic breathing also improved the glycemic index in these patients.
    CONCLUSION: The regular practice of diaphragmatic breathing significantly improves heart rate variability with a favorable prognostic picture in ischemic heart disease patients who have diabetes. These effects seem to be potentially beneficial in the management of IHD patients with diabetes.
    Matched MeSH terms: Myocardial Ischemia/physiopathology
  9. Yeo KK, Tai BC, Heng D, Lee JM, Ma S, Hughes K, et al.
    Diabetologia, 2006 Dec;49(12):2866-73.
    PMID: 17021918 DOI: 10.1007/s00125-006-0469-z
    AIMS/HYPOTHESIS: The aim of the study was to determine whether the risk of ischaemic heart disease (IHD) associated with diabetes mellitus differs between ethnic groups.

    METHODS: Registry linkage was used to identify IHD events in 5707 Chinese, Malay and Asian Indian participants from three cross-sectional studies conducted in Singapore between the years 1984 and 1995. The study provided a median of 10.2 years of follow-up with 240 IHD events experienced. We assessed the interaction between diabetes mellitus and ethnicity in relation to the risk of IHD events using Cox proportional hazards regression.

    RESULTS: Diabetes mellitus was more common in Asian Indians. Furthermore, diabetes mellitus was associated with a greater risk of IHD in Asian Indians. The hazard ratio when comparing diabetes mellitus with non-diabetes mellitus was 6.41 (95% CI 5.77-7.12) in Asian Indians and 3.07 (95% CI 1.86-5.06) in Chinese (p = 0.009 for interaction). Differences in the levels of established IHD risk factors among diabetics from the three ethnic groups did not appear to explain the differences in IHD risk.

    CONCLUSIONS/INTERPRETATION: Asian Indians are more susceptible to the development of diabetes mellitus than Chinese and Malays. When Asian Indians do develop diabetes mellitus, the risk of IHD is higher than for Chinese and Malays. Consequently, the prevention of diabetes mellitus amongst this ethnic group is particularly important for the prevention of IHD in Asia, especially given the size of the population at risk. Elucidation of the reasons for these ethnic differences may help us understand the pathogenesis of IHD in those with diabetes mellitus.
    Matched MeSH terms: Myocardial Ischemia/physiopathology
  10. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

    Matched MeSH terms: Brain Ischemia/physiopathology
  11. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Mohr TJ, et al.
    Cytotherapy, 2010;12(1):31-7.
    PMID: 19878080 DOI: 10.3109/14653240903313966
    Bone marrow (BM) mesenchymal stromal cells (MSC) represent a novel therapy for severe heart failure with extensive myocardial scarring, especially when performed concurrently with conventional revascularization. However, stem cells are difficult to transport in culture media without risk of contamination, infection and reduced viability. We tested the feasibility and safety of off-site MSC culture and expansion with freeze-controlled cryopreservation and subsequent rapid thawing of cells immediately prior to implantation to treat severe dilated ischemic cardiomyopathy.
    Matched MeSH terms: Myocardial Ischemia/physiopathology
  12. Nik Ramli NN, Omar N, Husin A, Ismail Z, Siran R
    Neurosci Lett, 2015 Feb 19;588:137-41.
    PMID: 25562631 DOI: 10.1016/j.neulet.2014.12.062
    Glutamate receptors are the integral cellular components associated with excitotoxicity mechanism induced by the ischemic cascade events. Therefore the glutamate receptors have become the major molecular targets of neuroprotective agents in stroke researches. Recent studies have demonstrated that a Group I metabotropic glutamate receptor agonist, (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) preconditioning elicits neuroprotection in the hippocampal slice cultures exposed to toxic level of N-methyl-d-aspartate (NMDA). We further investigated the preconditioning effects of (S)-3,5-DHPG on acute ischemic stroke rats. One 10 or 100μM of (S)-3,5-DHPG was administered intrathecally to Sprague-Dawley adult male rats, 2h prior to induction of acute ischemic stroke by middle cerebral artery occlusion (MCAO). After 24h, neurological deficits were evaluated by modified stroke severity scores and grid-walking test. All rats were sacrificed and infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride staining. The serum level of neuron-specific enolase (NSE) of each rat was analyzed by enzyme-linked immunosorbent assay (ELISA). One and 10μM of (S)-3,5-DHPG preconditioning in the stroke rats showed significant improvements in motor impairment (P<0.01), reduction in the infarct volume (P<0.01) and reduction in the NSE serum level (P<0.01) compared to the control stroke rats. We conclude that 1 and 10μM (S)-3,5-DHPG preconditioning induced protective effects against acute ischemic insult in vivo.
    Matched MeSH terms: Brain Ischemia/physiopathology
  13. King TL, Tiong LL, Kaman Z, Zaw WM, Abdul Aziz Z, Chung LW
    J Stroke Cerebrovasc Dis, 2020 Sep;29(9):105012.
    PMID: 32807427 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105012
    BACKGROUND: Located on the Borneo Island, Sarawak is the largest state of Malaysia and has a population distinctive from Peninsular Malaysia. The ischaemic stroke data in Sarawak had not been reported despite the growing number of patients annually. We aimed to investigate patient characteristics, management, and outcomes of ischaemic stroke in Sarawak and benchmark the results with national and international published data.

    METHODS: We included ischaemic stroke cases admitted to Sarawak General Hospital between June 2013 and August 2018 from Malaysia National Stroke Registry. We performed descriptive analyses on patient demographics, cardiovascular risk factors, prior medications, smoking status, arrival time, thrombolysis rate, Get With The Guidelines (GWTG)-Stroke measures, and outcomes at discharge. We also numerically compared the results from Sarawak with the published data from selected national and international cohorts.

    RESULTS: We analysed 1435 ischaemic stroke cases. The mean age was 60.1±13.2 years old; 64.9% were male; median baseline National Institute of Health Stroke Scale was seven points. Hypertension was the most prevalent risk factor of ischaemic stroke; 12.7% had recurrent stroke; 13.7% were active smokers. The intravenous thrombolysis rate was 18.8%. We achieved 80-90% in three GWTG-Stroke performance measures and 90-98% in four additional quality measures in our ischaemic stroke management. At discharge, 57% had modified Rankin Scale of 0-2; 6.7% died during hospitalisation. When compared with selected national and international data, patients in Sarawak were the youngest; Sarawak had more male and more first-ever stroke. Thrombolysis rate in Sarawak was higher compared with most studies in the comparison. Functional outcome at discharge in Sarawak was better than national cohort but still lagging behind when compared with the developed countries. In-hospital mortality rate in Sarawak was slightly lower than the national data but higher when compared with other countries.

    CONCLUSION: Our study described characteristics, management, and outcomes of ischaemic stroke in Sarawak. We achieved high compliance with most of GTWG-Stroke performance and quality indicators. Sarawak had better outcomes than the national results on ischaemic stroke. However, there is still room for improvement when compared with other countries. Actions are needed to reduce the cardiovascular burdens for stroke prevention, enhance healthcare resources for stroke care, and improve intravenous thrombolysis treatment in Sarawak.

    Matched MeSH terms: Brain Ischemia/physiopathology
  14. Hwong WY, Bots ML, Selvarajah S, Abdul Aziz Z, Sidek NN, Spiering W, et al.
    PLoS One, 2016;11(11):e0166524.
    PMID: 27846309 DOI: 10.1371/journal.pone.0166524
    BACKGROUND: The increase in angiotensin II (Ang II) formation by selected antihypertensive drugs is said to exhibit neuroprotective properties, but this translation into improvement in clinical outcomes has been inconclusive. We undertook a study to investigate the relationship between types of antihypertensive drugs used prior to a stroke event and ischemic stroke severity. We hypothesized that use of antihypertensive drugs that increase Ang II formation (Ang II increasers) would reduce ischemic stroke severity when compared to antihypertensive drugs that suppress Ang II formation (Ang II suppressors).

    METHODS: From the Malaysian National Neurology Registry, we included hypertensive patients with first ischemic stroke who presented within 48 hours from ictus. Antihypertensive drugs were divided into Ang II increasers (angiotensin-I receptor blockers (ARBs), calcium channel blockers (CCBs) and diuretics) and Ang II suppressors (angiotensin-converting-enzyme inhibitors (ACEIs) and beta blockers). We evaluated stroke severity during admission with the National Institute of Health Stroke Scale (NIHSS). We performed a multivariable logistic regression with the score being dichotomized at 15. Scores of less than 15 were categorized as less severe stroke.

    RESULTS: A total of 710 patients were included. ACEIs was the most commonly prescribed antihypertensive drug in patients using Ang II suppressors (74%) and CCBs, in patients prescribed with Ang II increasers at 77%. There was no significant difference in the severity of ischemic stroke between patients who were using Ang II increasers in comparison to patients with Ang II suppressors (OR: 1.32, 95%CI: 0.83-2.10, p = 0.24).

    CONCLUSION: In our study, we found that use of antihypertensive drugs that increase Ang II formation was not associated with less severe ischemic stroke as compared to use of antihypertensive drugs that suppress Ang II formation.

    Matched MeSH terms: Brain Ischemia/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links