Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Cho SJ, Lee J, Lee HJ, Jo HY, Sinniah M, Kim HY, et al.
    Int J Biol Sci, 2016;12(7):824-35.
    PMID: 27313496 DOI: 10.7150/ijbs.14408
    Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.
    Matched MeSH terms: Malaria/diagnosis*
  2. Britton S, Cheng Q, Grigg MJ, William T, Anstey NM, McCarthy JS
    Am J Trop Med Hyg, 2016 07 06;95(1):120-2.
    PMID: 27162264 DOI: 10.4269/ajtmh.15-0670
    The simian parasite Plasmodium knowlesi is now the commonest cause of malaria in Malaysia and can rapidly cause severe and fatal malaria. However, microscopic misdiagnosis of Plasmodium species is common, rapid antigen detection tests remain insufficiently sensitive and confirmation of P. knowlesi requires polymerase chain reaction (PCR). Thus available point-of-care diagnostic tests are inadequate. This study reports the development of a simple, sensitive, colorimetric, high-throughput loop-mediated isothermal amplification assay (HtLAMP) diagnostic test using novel primers for the detection of P. knowlesi. This assay is able to detect 0.2 parasites/μL, and compared with PCR has a sensitivity of 96% for the detection of P. knowlesi, making it a potentially field-applicable point-of-care diagnostic tool.
    Matched MeSH terms: Malaria/diagnosis*
  3. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: Malaria/diagnosis
  4. Boo YL, Lim HT, Chin PW, Lim SY, Hoo FK
    Parasitol Int, 2016 Feb;65(1):55-57.
    PMID: 26454133 DOI: 10.1016/j.parint.2015.10.003
    Plasmodium knowlesi, a zoonotic malaria, is now considered the fifth species of Plasmodium causing malaria in humans. With its 24-hour erythrocytic stage of development, it has raised concern regarding its high potential in replicating and leading to severe illness. Spleen is an important site for removal of parasitized red blood cells and generating immunity. We reported a case of knowlesi malaria in a non-immune, splenectomized patient. We observed the delay in parasite clearance, high parasitic counts, and severe illness at presentation. A thorough search through literature revealed several case reports on falciparum and vivax malaria in splenectomized patients. However, literature available for knowlesi malaria in splenectomized patient is limited. Further studies need to be carried out to clarify the role of spleen in host defense against human malaria especially P. knowlesi.
    Matched MeSH terms: Malaria/diagnosis
  5. Hopkins HO
    Matched MeSH terms: Malaria/diagnosis
  6. Müller-Sienerth N, Shilts J, Kadir KA, Yman V, Homann MV, Asghar M, et al.
    Malar J, 2020 Jan 17;19(1):31.
    PMID: 31952523 DOI: 10.1186/s12936-020-3111-5
    BACKGROUND: Malaria remains a global health problem and accurate surveillance of Plasmodium parasites that are responsible for this disease is required to guide the most effective distribution of control measures. Serological surveillance will be particularly important in areas of low or periodic transmission because patient antibody responses can provide a measure of historical exposure. While methods for detecting host antibody responses to Plasmodium falciparum and Plasmodium vivax are well established, development of serological assays for Plasmodium knowlesi, Plasmodium ovale and Plasmodium malariae have been inhibited by a lack of immunodiagnostic candidates due to the limited availability of genomic information.

    METHODS: Using the recently completed genome sequences from P. malariae, P. ovale and P. knowlesi, a set of 33 candidate cell surface and secreted blood-stage antigens was selected and expressed in a recombinant form using a mammalian expression system. These proteins were added to an existing panel of antigens from P. falciparum and P. vivax and the immunoreactivity of IgG, IgM and IgA immunoglobulins from individuals diagnosed with infections to each of the five different Plasmodium species was evaluated by ELISA. Logistic regression modelling was used to quantify the ability of the responses to determine prior exposure to the different Plasmodium species.

    RESULTS: Using sera from European travellers with diagnosed Plasmodium infections, antigens showing species-specific immunoreactivity were identified to select a panel of 22 proteins from five Plasmodium species for serological profiling. The immunoreactivity to the antigens in the panel of sera taken from travellers and individuals living in malaria-endemic regions with diagnosed infections showed moderate power to predict infections by each species, including P. ovale, P. malariae and P. knowlesi. Using a larger set of patient samples and logistic regression modelling it was shown that exposure to P. knowlesi could be accurately detected (AUC = 91%) using an antigen panel consisting of the P. knowlesi orthologues of MSP10, P12 and P38.

    CONCLUSIONS: Using the recent availability of genome sequences to all human-infective Plasmodium spp. parasites and a method of expressing Plasmodium proteins in a secreted functional form, an antigen panel has been compiled that will be useful to determine exposure to these parasites.

    Matched MeSH terms: Malaria/diagnosis
  7. Sidhu PS, Ng SC
    Med J Malaysia, 1991 Jun;46(2):177-82.
    PMID: 1839423
    A review of malaria cases over a five year period from 1984-1988 at the University Hospital, Kuala Lumpur, Malaysia is presented. A total of 64 cases were recorded; 50% of which were due to Plasmodium falciparum, 40.6% were due to Plasmodium vivax, 6.2% due to Plasmodium malariae and 3.1% due to a mixed infection of Plasmodium falciparum and Plasmodium vivax. The breakdown of species type compared similarly with other studies conducted in the region. Of this total, sixteen cases were imported from Pakistan, India, Thailand, Indonesia, Sri Lanka, Vietnam, Madagascar and Mali. The presenting symptoms and the clinical findings were typical of a malaria infection. The main problem in the future will be the increase in imported cases of malaria.
    Matched MeSH terms: Malaria/diagnosis
  8. Lau YL, Lee WC, Tan LH, Kamarulzaman A, Syed Omar SF, Fong MY, et al.
    Malar J, 2013;12:389.
    PMID: 24180319 DOI: 10.1186/1475-2875-12-389
    Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research.
    Matched MeSH terms: Malaria/diagnosis*
  9. Mak JW, Yong HS, Lim PK, Tan MA
    PMID: 3406806
    Biotechnological tools are being used in malaria, filariasis and dengue research. The main emphasis has been on the production of reagents for immunodiagnosis and research. In this respect monoclonal antibodies (McAbs) against various species and stages of the above pathogens have been produced. It is hoped that these McAbs will be useful not only in immunodiagnosis but also for seroepidemiological applications. A DNA probe against Brugia malayi has been tested in Malaysia and was found to be sensitive and specific.
    Matched MeSH terms: Malaria/diagnosis
  10. Ramírez AM, Tang THT, Suárez ML, Fernández AÁ, García CM, Hisam S, et al.
    Am J Trop Med Hyg, 2021 Oct 12;105(6):1732-1737.
    PMID: 34662870 DOI: 10.4269/ajtmh.21-0406
    Malaria control and elimination require prompt diagnosis and accurate treatment. Conventional methods such as rapid diagnostic tests (RDTs) and microscopy lack the characteristics to detect low parasitemias, commonly found in asymptomatic parasitemias and/or submicroscopic malaria carriers. On the contrary, molecular methods have higher sensitivity and specificity. This study evaluated the performance of two commercial real-time polymerase chain reaction (PCR) assays, RealStar® Malaria PCR (RealStar-genus) and RealStar Malaria Screen&Type PCR (RealStar-species), compared with the reference Nested Multiplex Malaria PCR, for the detection of the main five Plasmodium species affecting humans. A total of 121 samples were evaluated. Values of sensitivity (98.9% and 97.8%) and specificity (100% and 96.7%) of the RealStar-genus and the RealStar-species assays, respectively, were very good. The limit of detection (LoD) for the RealStar-genus assay showed a mean value of 0.28 parasites/µL with Plasmodium falciparum samples; while, the LoD of the RealStar-species assay ranged from 0.09 parasites/µL for P. vivax to two parasites/µL for P. ovale. The time to complete a diagnosis was established in 4 hours. Our findings showed a very good concordance of both assays compared with the reference method, with a very good analytical sensitivity. RealStar-species assay was able to correctly characterize double and triple infections. Therefore, these RealStar assays have shown to be useful tools in malaria diagnosis in non-endemic countries and even endemic countries, and for malaria control in general, detecting low parasitemias with sensitivity similar to the most sensitive methods as nested PCR, but with lower time to get the results.
    Matched MeSH terms: Malaria/diagnosis*
  11. Ngernna S, Rachaphaew N, Thammapalo S, Prikchoo P, Kaewnah O, Manopwisedjaroen K, et al.
    Am J Trop Med Hyg, 2019 12;101(6):1397-1401.
    PMID: 31595871 DOI: 10.4269/ajtmh.19-0063
    Although human infections of Plasmodium knowlesi have been found throughout Southeast Asia, most cases originated from Malaysian Borneo. In Thailand, P. knowlesi malaria was considered extremely rare. However, during October 2017-September 2018, there was a surge in the number of reported P. knowlesi cases. Here, a series of six cases of P. knowlesi malaria found during this period in Songkhla and Narathiwat provinces of southern Thailand are presented. All cases were confirmed by polymerase chain reaction. The unprecedented case number in the affected area is a warning sign of an increasing P. knowlesi burden in the south of Thailand.
    Matched MeSH terms: Malaria/diagnosis*
  12. Liew JWK, Ooi CH, Snounou G, Lau YL
    Am J Trop Med Hyg, 2019 12;101(6):1402-1404.
    PMID: 31595863 DOI: 10.4269/ajtmh.19-0305
    Here are two cases of recurring ovale malaria in Sarawak, Malaysia, that are likely relapses that occurred 1-2 months after successful treatment of the initial imported falciparum malaria with artemisinin-based combined therapy. The patients have no history or recollection of previous malaria episodes. These cases add to the limited evidence on the relapsing nature of Plasmodium ovale, after a febrile episode. In regions where P. ovale is not known to be autochthonous, active follow-up of treated imported malaria patients is highly recommended following their return, particularly to areas nearing or having achieved elimination.
    Matched MeSH terms: Malaria/diagnosis*
  13. Rajahram GS, Barber BE, Yeo TW, Tan WW, William T
    Med J Malaysia, 2013;68(1):71-2.
    PMID: 23466773 MyJurnal
    Matched MeSH terms: Malaria/diagnosis
  14. Azira NM, Zairi NZ, Amry AR, Zeehaida M
    Trop Biomed, 2012 Sep;29(3):398-404.
    PMID: 23018503 MyJurnal
    Plasmodium knowlesi is a simian malaria parasite and is recently recognized as the fifth malaria parasite infecting humans. Manifestation of the infection may resemble other infection particularly dengue fever leading to inappropriate management and delay in treatment. We reported three cases of naturally acquired P. knowlesi in Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Clinical manifestations were quite similar in those cases. Microscopically, the diagnosis might be challenging. These cases were confirmed by polymerase chain reaction method which serves as a gold standard.
    Matched MeSH terms: Malaria/diagnosis*
  15. Sandosham AA, Fredericks HJ, Ponnampalam JT, Seow CL, Ismail O, Othman AM, et al.
    J Trop Med Hyg, 1975 Mar;78(3):54-8.
    PMID: 1095776
    Chloroquine resistance is a well established entity in South East Asia, and presents a problem of increasing importance. Strains of P. falciparum resistant to chloroquine have also been found to be resistant to amodiaquine and a combination of pyrimethamine and sulphadoxine. Knowledge of the drug sensitivity of the strains of malaria parasite in a given locality is important so that the right choice of drugs can be made in treatment of the disease. The treatment of chloroquine resistant malaria in West Malaysia is a subject of another paper but suffice it to say that increased doses of chloroquine have still been found to be effective in treating many cases of falciparum malaria from areas of chloroquine resistance.
    Matched MeSH terms: Malaria/diagnosis
  16. O'Holohan DR, Hugoe-Matthews J
    Med J Malaya, 1972 Sep;27(1):52-6.
    PMID: 4264826
    Matched MeSH terms: Malaria/diagnosis
  17. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Clin Infect Dis, 2009 Sep 15;49(6):852-60.
    PMID: 19635025 DOI: 10.1086/605439
    BACKGROUND: Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections.

    METHODS: In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008.

    RESULTS: Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/microL (interquartile range, 6-222,570 parasites/microL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (p < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%-6.6%).

    CONCLUSIONS: Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

    Matched MeSH terms: Malaria/diagnosis*
  18. O'Holohan DR
    J Trop Med Hyg, 1976 Sep;79(9):191-6.
    PMID: 794512
    In the context of this study the ethnic origin of the patients revealed no noteworthy difference in the clinical reaction to the parasite; neither did age or sex of the patients. Any minor differences whcih appeared in length of history before seeking treatment and frequency of repeat attacks were more a reflection of the cultural pattern of response to illness (i.e. resort to traditional medicines) and the distance between the patient's home and the doctor rather than any altered response on the part of the host to the parasite. However, the fact that about 35 per cent of all the episodes had a history of eight or more days (about 10 per cent more than 30 days) suggest that more "malaria consciousness" is called for in what is after all an endemic malaria area. The value (and necessity) of repeated examination of the blood to detect the parasite is confirmed but it is also encouraging to note that in 84% of cases a single careful examination of the blood revealed the parasite. Since in 49% of our malaria episodes the patient was afebrile when the parasite was discovered, it is obvious that in outpatient practice especially blood should be examined when the patient presents for treatment, irrespective of the presence or absence of pyrexia. As always, a prerequisite to the diagnosis of malaria is an awareness of its possible presence.
    Matched MeSH terms: Malaria/diagnosis*
  19. Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, Divis PC, et al.
    Malar J, 2010;9:238.
    PMID: 20723228 DOI: 10.1186/1475-2875-9-238
    Plasmodium knowlesi is a cause of symptomatic and potentially fatal infections in humans. There are no studies assessing the detailed parasitological response to treatment of knowlesi malaria infections in man and whether antimalarial resistance occurs.
    Matched MeSH terms: Malaria/diagnosis
  20. Palaeya V, Lau YL, Mahmud R, Chen Y, Fong MY
    Malar J, 2013;12:182.
    PMID: 23734702 DOI: 10.1186/1475-2875-12-182
    Plasmodium knowlesi is the fifth species identified to cause malaria in humans and is often misdiagnosed as Plasmodium malariae due to morphological similarities. The development of an inexpensive, serological detection method utilizing antibodies specific to P. knowlesi would be a valuable tool for diagnosis. However, the identification of specific antigens for these parasites remains a major challenge for generating such assays. In this study, surface protein containing an altered thrombospondin repeat domain (SPATR) was selected as a potentially specific antigen from P. knowlesi. Its multistage expression by sporozoites, asexual erythrocytic forms and gametocytes, along with its possible role in liver cell invasion, suggests that SPATR could be used as a biomarker for diagnosis of P. knowlesi.
    Matched MeSH terms: Malaria/diagnosis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links