Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Biomed Res Int, 2014;2014:316310.
    PMID: 24790995 DOI: 10.1155/2014/316310
    The vitamin K epoxide reductase complex 1 gene (VKORC1) is commonly assessed to predict warfarin sensitivity. In this study, a new nested allele-specific multiplex polymerase chain reaction (PCR) method that can simultaneously identify single nucleotide polymorphisms (SNPs) at VKORC1 381, 861, 5808, and 9041 for haplotype analysis was developed and validated. Extracted DNA was amplified in the first PCR DNA, which was optimized by investigating the effects of varying the primer concentrations, annealing temperature, magnesium chloride concentration, enzyme concentration, and the amount of DNA template. The amplification products produced from the first round of PCR were used as templates for a second PCR amplification in which both mutant and wild-type primers were added in separate PCR tubes, followed by optimization in a similar manner. The final PCR products were resolved by agarose gel electrophoresis and further analysed by using a VKORC1 genealogic tree to infer patient haplotypes. Fifty patients were identified to have H1H1, one had H1H2, one had H1H7, 31 had either H1H7 or H1H9, one had H1H9, eight had H7H7, and one had H8H9 haplotypes. This is the first method that is able to infer VKORC1 haplotypes using only conventional PCR methods.
    Matched MeSH terms: Metabolism, Inborn Errors/genetics*
  2. Abdul Wahab SA, Yakob Y, Abdul Azize NA, Md Yunus Z, Huey Yin L, Mohd Khalid MK, et al.
    Biomed Res Int, 2016;2016:4074365.
    PMID: 27672653
    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors
  3. Eng LI, Loo M, Fah FK
    Br J Haematol, 1972 Oct;23(4):419-25.
    PMID: 5084807
    Matched MeSH terms: Metabolism, Inborn Errors/enzymology
  4. Mohd Khialdin S, Grigg J, Rowe N, Crofts S, Wilson M, Troedson C
    PMID: 26396085 DOI: 10.1007/s10633-015-9511-0
    Phosphoglycerate kinase (PGK) deficiency is an X-linked neurometabolic genetic disorder with variable systemic manifestations. So far, only one patient with retinal anomalies has been reported, but no visual electrophysiology findings were described. We report the first description of visual electrophysiology in a child with PGK deficiency. This provides further information for the site of involvement in the eye.
    Matched MeSH terms: Metabolism, Inborn Errors/genetics; Metabolism, Inborn Errors/physiopathology*
  5. Habib A, Md Yunus Z, Azize NA, Ch'ng GS, Ong WP, Chen BC, et al.
    Eur J Pediatr, 2013 Sep;172(9):1277-81.
    PMID: 23358709 DOI: 10.1007/s00431-013-1947-1
    Lysinuric protein intolerance (LPI; MIM 222700) is an inherited aminoaciduria with an autosomal recessive mode of inheritance. Biochemically, affected patients present with increased excretion of the cationic amino acids: lysine, arginine, and ornithine. We report the first case of LPI diagnosed in Malaysia presented with excessive excretion of homocitrulline. The patient was a 4-year-old male who presented with delayed milestones, recurrent diarrhea, and severe failure to thrive. He developed hyperammonemic coma following a forced protein-rich diet. Plasma amino acid analysis showed increased glutamine, alanine, and citrulline but decreased lysine, arginine and ornithine. Urine amino acids showed a marked excretion of lysine and ornithine together with a large peak of unknown metabolite which was subsequently identified as homocitrulline by tandem mass spectrometry. Molecular analysis confirmed a previously unreported homozygous mutation at exon 1 (235 G > A, p.Gly79Arg) in the SLC7A7 gene. This report demonstrates a novel mutation in the SLC7A7 gene in this rare inborn error of diamino acid metabolism. It also highlights the importance of early and efficient treatment of infections and dehydration in these patients.

    CONCLUSION: The diagnosis of LPI is usually not suspected by clinical findings alone, and specific laboratory investigations and molecular analysis are important to get a definitive diagnosis.

    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/diagnosis*; Amino Acid Metabolism, Inborn Errors/genetics; Amino Acid Metabolism, Inborn Errors/urine
  6. Zahid M, Khan AH, Yunus ZM, Chen BC, Steinmann B, Johannes H, et al.
    J Pak Med Assoc, 2019 Mar;69(3):432-436.
    PMID: 30890842
    In spite of the efforts and interventions by the Government of Pakistan and The World Health Organization, the neonatal mortality in Pakistan has declined by only 0.9% as compared to the global average decline of 2.1% between 2000 and 2010. This has resulted in failure to achieve the global Millennium Development Goal 4. Hypoxic-ischaemic encephalopathy, still birth, sepsis, pneumonia, diarrhoea and birth defects are commonly attributed as leading causes of neonatal mortality in Pakistan. Inherited metabolic disorders often present at the time of birth or the first few days of life. The clinical presentation of the inherited metabolic disorders including hypotonia, seizure and lactic acidosis overlap with clinical features of hypoxic-ischaemic encephalopathy and sepsis. Thus, these disorders are often either missed or wrongly diagnosed as hypoxicischaemic encephalopathy or sepsis unless the physicians actively investigate for the underlying inherited metabolic disorders. We present 4 neonates who had received the diagnosis of hypoxic-ischaemic encephalopathy and eventually were diagnosed to have various inherited metabolic disorders. Neonates with sepsis and hypoxic-ischaemic encephalopathy-like clinical presentation should be evaluated for inherited metabolic disorders.
    Matched MeSH terms: Metal Metabolism, Inborn Errors/diagnosis*
  7. Thong MK
    JUMMEC, 2012;15(2):1-8.
    MyJurnal
    The story of clinical genetics is a relatively new one, first spearheaded by paediatrics but increasingly, has taken root in all branches of medicine leading to ‘personalised medicine’. There are expectations that this revolution in genetics will pave the way to genomic medicine and a cure for all inherited disorders. The development of the field of Clinical Genetics and genetic counselling in Malaysia is still in its infancy. Using evidence-based data on genetic disorders such as birth defects, inborn errors of metabolism, genetic syndromes, neurological disorders and hereditary cancers, that hitherto have not been well documented in Malaysia, this review article will focus on findings and issues that will present a unique insight and opportunity to understanding the complex genetic counselling issues related to clinical genetics in Malaysia.
    Matched MeSH terms: Metabolism, Inborn Errors
  8. Tay CG, Ariffin H, Yap S, Rahmat K, Sthaneshwar P, Ong LC
    J Child Neurol, 2015 Jun;30(7):927-31.
    PMID: 25122112 DOI: 10.1177/0883073814540523
    Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessive disorder affecting catabolism of the neurotransmitter gamma-aminobutyric acid (GABA), with a wide range of clinical phenotype. We report a Malaysian Chinese boy with a severe early onset phenotype due to a previously unreported mutation. Urine organic acid chromatogram revealed elevated 4-hydroxybutyric acid. Magnetic resonance imaging (MRI) of the brain demonstrated cerebral atrophy with atypical putaminal involvement. Molecular genetic analysis showed a novel homozygous 3-bp deletion at the ALDH5A1 gene c.1501_1503del (p.Glu501del). Both parents were confirmed to be heterozygotes for the p.Glu501del mutation. The clinical course was complicated by the development of subdural hemorrhage probably as a result of rocking the child to sleep for erratic sleep-wake cycles. This case illustrates the need to recognize that trivial or unintentional shaking of such children, especially in the presence of cerebral atrophy, can lead to subdural hemorrhage.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors/genetics*; Amino Acid Metabolism, Inborn Errors/pathology*; Amino Acid Metabolism, Inborn Errors/physiopathology
  9. Chen BC, McGown IN, Thong MK, Pitt J, Yunus ZM, Khoo TB, et al.
    J Inherit Metab Dis, 2010 Dec;33 Suppl 3:S159-62.
    PMID: 20177786 DOI: 10.1007/s10545-010-9056-z
    Most cases of adenylosuccinate lyase (ADSL OMIM 103050) deficiency reported to date are confined to the various European ethnic groups. We report on the first Malaysian case of ADSL deficiency, which appears also to be the first reported Asian case. The case was diagnosed among a cohort of 450 patients with clinical features of psychomotor retardation, global developmental delay, seizures, microcephaly and/or autistic behaviour. The patient presented with frequent convulsions and severe myoclonic jerk within the first few days of life and severe psychomotor retardation. The high performance liquid chromatography (HPLC) profile of the urine revealed the characteristic biochemical markers of succinyladenosine (S-Ado) and succinyl-aminoimidazole carboximide riboside (SAICAr). The urinary S-Ado/SAICAr ratio was found to be 1.02 (type I ADSL deficiency). The patient was compound heterozygous for two novel mutations, c.445C > G (p.R149G) and c.774_778insG (p.A260GfsX24).
    Matched MeSH terms: Purine-Pyrimidine Metabolism, Inborn Errors/complications; Purine-Pyrimidine Metabolism, Inborn Errors/diagnosis*; Purine-Pyrimidine Metabolism, Inborn Errors/enzymology; Purine-Pyrimidine Metabolism, Inborn Errors/genetics*
  10. Padilla CD, Therrell BL
    J Inherit Metab Dis, 2007 Aug;30(4):490-506.
    PMID: 17643195
    The success of blood spot newborn screening in the USA led to early screening efforts in parts of the Asia Pacific Region in the mid-1960s. While there were early screening leaders in the region, many of the countries with depressed and developing economies are only now beginning organized screening efforts. Four periods of screening growth in the Asia Pacific region were identified. Beginning in the 1960s, blood spot screening began in New Zealand and Australia, followed by Japan and a cord blood screening programme for G6PD deficiency in Singapore. In the 1980s, established programmes added congenital hypothyroidism and new programmes developed in Taiwan, Hong Kong, China (Shanghai), India and Malaysia. Programmes developing in the 1990s built on the experience of others developing more rapidly in Korea, Thailand and the Philippines. In the 2000s, with limited funding support from the International Atomic Energy Agency, there has been screening programme development around detection of congenital hypothyroidism in Indonesia, Mongolia, Sri Lanka, Myanmar and Pakistan. Palau has recently contracted with the Philippine newborn screening programme. There is little information available on newborn screening activities in Nepal, Cambodia, Laos and the other Pacific Island nations, with no organized screening efforts apparent. Since approximately half of the births in the world occur in the Asia Pacific Region, it is important to continue the ongoing implementation and expansion efforts so that these children can attain the same health status as children in more developed parts of the world and their full potential can be realized.
    Matched MeSH terms: Metabolism, Inborn Errors/blood*; Metabolism, Inborn Errors/diagnosis*
  11. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2018 May 02.
    PMID: 29721915 DOI: 10.1007/s10545-018-0184-1
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors
  12. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2019 01;42(1):147-158.
    PMID: 30740741 DOI: 10.1002/jimd.12036
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors/genetics*; Carbohydrate Metabolism, Inborn Errors/metabolism*
  13. Lee WS, Davidson GP, Moore DJ, Butler RN
    J Paediatr Child Health, 2000 Aug;36(4):340-2.
    PMID: 10940167
    OBJECTIVE: To assess the validity and clinical application of a hand-held breath hydrogen (H2) analyzer (BreatH2, Europa Scientific, Crewe, UK).

    METHODOLOGY: Breath samples of patients referred to the Gastroenterology Unit, Women's and Children's Hospital, North Adelaide, South Australia, for confirmation of the diagnosis of carbohydrate malabsorption were analysed with the Quintron microlyzer (Quintron Instrument Co., Milwaukee, USA) and the BreatH2 analyser, using the Quintron microlyzer as the gold standard.

    RESULTS: Twenty-nine breath H2 tests (BHT) were performed in 29 patients aged 2 months to 61 years. The sensitivity and specificity of the BreatH2 analyser in detecting a positive BHT using the Quintron microlyser as the gold standard were 0.90 and 0.95 with positive and negative predictive values of 0.90 and 0.95, respectively. There was one false positive and one false negative reading. Bland-Altman plots showed a high degree of agreement between the values obtained with two different methods.

    CONCLUSIONS: The diagnosis of carbohydrate malabsorption, using a portable breath H2 analyser (BreatH2), achieved an acceptable degree of sensitivity and specificity, enabling it to be used where no alternative is available.

    Matched MeSH terms: Carbohydrate Metabolism, Inborn Errors/diagnosis*
  14. Balasubramaniam S, Wamelink MM, Ngu LH, Talib A, Salomons GS, Jakobs C, et al.
    J Pediatr Gastroenterol Nutr, 2011 Jan;52(1):113-6.
    PMID: 21119539 DOI: 10.1097/MPG.0b013e3181f50388
    Matched MeSH terms: Metabolism, Inborn Errors/complications; Metabolism, Inborn Errors/diagnosis; Metabolism, Inborn Errors/genetics*
  15. Melati Khalid, Mohamad Aris Mohd Moklas
    MyJurnal
    Aromatic L-amino acid decarboxylase deficiency (AADC) is a rare autosomal recessive pediatric neurotransmitter disease. To date it remains poorly understood mainly due to an absence of a disease model. The dopaminergic neuroblastoma cell SH-SY5Y was chosen to develop our AADC deficiency model. These cells are not native dopamine synthesizers. Objective: To develop a dopamine-producing cellular model of AADC deficiency using SH-SY5Y neuroblastoma cells. Methods: Dopamine pathway proteins were identified with Western Blotting. Dopaminergic differentiation was attempted using all-trans retinoic acid (ATRA) with dopamine detection via HPLC-ECD post alumina extraction. Treatment with L-DOPA provided SH-SY5Y with excess precursor. RT-PCR was used to determine the expression of markers of mature neurons. Results: Western Blot screening identified AADC, dopamine β-hydroxylase and tyrosine hyrdoxylase proteins, indicative of a dopaminergic pathway. ATRA was unsuccessful in producing dopamine from the cells. L-DOPA treatment however, generated dopamine first visible as a HPLC-ECD peak 30 minutes post-incubation. Prior to this, SH-SY5Y dopamine synthesis from L-DOPA has never been documented. This de novo synthesis is then inhibited using benserazide to form our AADC deficiency cell model. RT-PCR showed that SH-SY5Y cells express markers of mature neurons in its ‘native’ state and is not affected by L-DOPA and benserazide treatment. This cell model will potentially benefit many areas of AADC deficiency research. Conclusion: SH-SY5Y cells produced HPLC-ECD measureable amounts of dopamine with the addition of L-DOPA. Our model of AADC deficiency is generated by quelling the dopamine production with Benserazide.
    Matched MeSH terms: Amino Acid Metabolism, Inborn Errors
  16. Bilodi, Arun Kumar .S, Gangadhar, M R
    MyJurnal
    Anomaly is a congenital disorder. It is a medical condition that is present since birth. But the word congenital neither applies nor excludes genetic disorder. Congenital anomalies due to environmental factors are called as Teratogens. Infections, deficiency in the diet and toxins are environmental causes. Maternal folic acid deficiency may cause spina bifida. Intake of alcohol, and certain prescribed drugs like phenytoin may cause congenital anomalies or defects. Apart from physical anomalies, other types of congenital disorders are inborn errors of metabolism (Kumar, Abbas and Fausto, 2005). About 15% to 25% of anomalies are due to chromosomal factors or single gene factors, 8% to 12% anomalies are said to be due to environmental factors, 25% are said to be due to multifactorial inheritance 40% to 60% of anomalies are of unknown origin (Stevenson, 1993 ; Nelson and Holmes, 1984). Congenital anomalies are present since birth with structural deformity found immediately after birth or their presence may be detected by signs and symptoms later on (Holland and Brew, 1991). Congenital Anomalies are seen in 2% of population as major abnormality. There are two types of abnormalities, namely malformations where growth disturbances occur during embryogenesis and the other is deformation. It is late change that appears in a structure which was normal earlier (Roizen and Patterson, 2003).
    Matched MeSH terms: Metabolism, Inborn Errors
  17. Thong, M.K., Choy, Y.S., Rawi, R.M.
    MyJurnal
    Inborn errors of metabolism (IEM) are a group of disorders that causes abnormal function of biochemical pathways. Archibald Garrod des-cribed the first inborn error of metabolism in 1893. He described alkaptonuria in a patient whose urine turned black on standing and the development of arthritis in adult life.' Subse-quently, Garrod encapsulated the idea of IEM in 1908 with the concept of 'chemical indivi-duality'. Beadle and Tatum proposed the concept of one gene - one enzyme in 1945.2 Phenyl-ketonuria (PKU) was described in 1934 and amongst the first to be recognised as a cause of mental handicap with a biochemical basis.' Effective treatment for PKU with low pheny-lalanine diet was introduced in 1955. Molecular characterisation of genetic defects localised to alleles in various chromosomes were performed in the last two decades
    Matched MeSH terms: Metabolism, Inborn Errors
  18. Al-Mayouf SM, Alreefi HA, Alsinan TA, AlSalmi G, AlRowais A, Al-Herz W, et al.
    Mod Rheumatol, 2021 Nov;31(6):1171-1178.
    PMID: 33563058 DOI: 10.1080/14397595.2021.1886627
    OBJECTIVES: To report the phenotypic, genetic findings and outcome of children with lupus manifestations associated with primary immunodeficiency diseases (PIDs).

    METHODS: Data are retrospectively collected on patients with lupus manifestations and PIDs seen between 1998 and 2019. Data comprised the clinical findings and genetic testing, the response to treatment and the accrual damage related to SLE.

    RESULTS: A total of 39 patients (22 female) were reviewed. Thirty-four patients had lupus manifestations and six patients with SLE-like manifestations. Genetic analysis was performed in 25 patients. Complement deficiency was the most frequent PIDs; 26 patients were C1q deficient, three patients had C3 deficiency, two patients had C4 deficiency and one patient with heterozygous C8b variant. The other seven patients had different PIDs genetic defects that include SCID caused by PNP deficiency, CGD, CVID (PIK3CD), IL-2RB mutation, DNase II deficiency, STAT1 mutation, ISG15 mutation and Griscelli syndrome type 3. Mucocutaneous lesions, arthritis and lung involvement were the main clinical features. 84.1% experienced recurrent infections. The mean accrual damage was 2.7 ± 2.2. There were five deaths because of infection.

    CONCLUSION: This study suggests that patients with lupus manifestations and early onset disease, family history of SLE or recurrent infections should undergo immunological work-up and genetic testing to rule out PIDs.

    Matched MeSH terms: Purine-Pyrimidine Metabolism, Inborn Errors*
  19. Thong MK
    Mol Genet Metab, 2012 Apr;105(4):551-2.
    PMID: 22284267 DOI: 10.1016/j.ymgme.2012.01.003
    Matched MeSH terms: Metabolism, Inborn Errors/etiology*; Metabolism, Inborn Errors/history*
  20. Elmonem MA, Belanger-Quintana A, Bordugo A, Boruah R, Cortès-Saladelafont E, Endrakanti M, et al.
    Mol Genet Metab, 2020 11;131(3):285-288.
    PMID: 33004274 DOI: 10.1016/j.ymgme.2020.09.004
    Quantitative estimates for the global impact of COVID-19 on the diagnosis and management of patients with inborn errors of metabolism (IEM) are lacking. We collected relevant data from 16 specialized medical centers treating IEM patients in Europe, Asia and Africa. The median decline of reported IEM related services in March 1st-May 31st 2020 compared to the same period in 2019 were as high as 60-80% with a profound impact on patient management and care for this vulnerable patient group. More representative data along with outcome data and guidelines for managing IEM disorders under such extraordinary circumstances are needed.
    Matched MeSH terms: Metabolism, Inborn Errors/diagnosis*; Metabolism, Inborn Errors/epidemiology; Metabolism, Inborn Errors/therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links