Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Wan Hasan WN, Kwak MK, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    PMID: 24559113 DOI: 10.1186/1472-6882-14-72
    Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  2. Abu-Bakar A, Hu H, Lang MA
    Basic Clin Pharmacol Toxicol, 2018 Sep;123 Suppl 5:72-80.
    PMID: 29788535 DOI: 10.1111/bcpt.13046
    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs - including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2) - at the 'stress-responding' cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilization mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'-UTR of the CYP2A5 mRNA. We designed a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wild-type) or mutant - pGL4.38-Cyp2a5_StREMut and pGL4.38-Cyp2a5_XREMut - reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine the sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC50 and EC50 of the respective chemicals. The three assays are sensitive to sublethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wild-type reporter responded well to chemicals that activate crosstalk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  3. Pandurangan AK, Saadatdoust Z, Esa NM, Hamzah H, Ismail A
    Biofactors, 2015 Jan-Feb;41(1):1-14.
    PMID: 25545372 DOI: 10.1002/biof.1195
    Colorectal cancer (CRC) is the third most common malignancy in males and the second most common cancer worldwide. Chronic colonic inflammation is a known risk factor for CRC. Cocoa contains many polyphenolic compounds that have beneficial effects in humans. The objective of this study is to explore the antioxidant properties of cocoa in the mouse model of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis-associated cancer, focusing on the activation of Nrf2 signaling. Mice were treated with AOM/DSS and randomized to receive either a control diet or a 5 and 10% cocoa diet during the study period. On day 62 of the experiment, the entire colon was processed for biochemical and histopathological examination and further evaluations. Increased levels of malondialdehyde (MDA) were observed in AOM/DSS-induced mice; however, subsequent administration of cocoa decreased the MDA. Enzymatic and nonenzymatic antioxidants, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, were decreased in the AOM/DSS mice. Cocoa treatment increases the activities/levels of enzymatic and nonenzymatic antioxidants. Inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, were elevated during AOM/DSS-induction, and treatment with 5 and 10% cocoa effectively decreases the expression of iNOS and COX-2. The NF-E2-related factor 2 and its downstream targets, such as NQO1 and UDP-GT, were increased by cocoa treatment. The results of our study suggest that cocoa may merit further clinical investigation as a chemopreventive agent that helps prevent CAC.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  4. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  5. Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, et al.
    Brain Res, 2024 Mar 01;1826:148715.
    PMID: 38142722 DOI: 10.1016/j.brainres.2023.148715
    BACKGROUND: The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown.

    METHODS: The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus.

    RESULTS: Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1β, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats.

    CONCLUSION: The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  6. Pandurangan AK, Mohebali N, Norhaizan ME, Looi CY
    Drug Des Devel Ther, 2015;9:3923-34.
    PMID: 26251571 DOI: 10.2147/DDDT.S86345
    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  7. Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X
    Drug Dev Res, 2019 09;80(6):837-845.
    PMID: 31301179 DOI: 10.1002/ddr.21567
    The objective of this study was to evaluate the neuroprotective effect of sitagliptin (Sita), quercetin (QCR) and its combination in β-amyloid (Aβ) induced Alzheimer's disease (AD). Male Sprague-Dawley rats, weighing between 220 and 280 g were used for experiment. Rats were divided into 5 groups (n = 10) and the groups were as follows: (a) Sham control; (b) Aβ injected; (c) Aβ injected + Sita 100; (d) Aβ injected + QCR 100; and (e) Aβ injected + Sita 100 + QCR 100. Cognitive performance was observed by the Morris water maze (MWM), biochemical markers, for example, MDA, SOD, CAT, GSH, Aβ1-42 level, Nrf2/HO-1 expression and histopathological study of rat brain were estimated. Pretreatment with Sita, QCR and their combination showed a significant increase in escape latency in particular MWM cognitive model. Further co-administration of sita and QCR significantly reduced Aβ1-42 level when compared with individual treatment. Biochemical markers, for example, increased SOD, CAT and GSH, decreased MDA were seen, and histopathological studies revealed the reversal of neuronal damage in the treatment group. Additionally, Nrf2/HO-1 pathway in rat's brain was significantly increased by Sita, QCR and their combination. Pretreatment with QCR potentiates the action of Sita in Aβ induced AD in rats. The improved cognitive memory could be because of the synergistic effect of the drugs by decreasing Aβ1-42 level, antioxidant activity and increased expression of Nrf2/HO-1 in rat brain.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  8. Huang D, Awad ACA, Tang C, Chen Y
    Environ Toxicol, 2024 Mar;39(3):1335-1349.
    PMID: 37955318 DOI: 10.1002/tox.24036
    BACKGROUND: Demethylnobiletin (DN), with a variety of biological activities, is a polymethoxy-flavanone (PMF) found in citrus. In the present study, we explored the biological activities and potential mechanism of DN to improve cerebral ischemia reperfusion injury (CIRI) in rats, and identified DN as a novel neuroprotective agent for patients with ischemic brain injury.

    METHODS: Rat CIRI models were established via middle cerebral artery occlusion (MCAO). Primary nerve cells were isolated and cultured in fetal rat cerebral cortex in vitro, and oxygen-glucose deprivation/reperfusion (OGD/R) models of primary nerve cells were induced. After intervention with DN with different concentrations in MCAO rats and OGD/R nerve cells, 2,3,5-triphenyltetrazolium chloride staining was used to quantify cerebral infarction size in CIRI rats. Modified neurological severity score was utilized to assess neurological performance. Histopathologic staining and live/dead cell-viability staining was used to observe apoptosis. Levels of glutathione (GSH), superoxide dismutase (SOD), reactive oxygen species (ROS) and malondialdehyde (MDA) in tissues and cells were detected using commercial kits. DN level in serum and cerebrospinal fluid of MCAO rats were measured by liquid chromatography tandem mass spectrometry. In addition, expression levels of proteins like Kelch like ECH associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nfr2) and heme oxygenase 1 (HO-1) in the Nrf2/HO-1 pathway, and apoptosis-related proteins like Cleaved caspase-3, BCL-2-associated X protein (Bax) and B-cell lymphoma-2 (Bcl-2) were determined by Western blot and immunofluorescence.

    RESULTS: DN can significantly enhance neurological function recovery by reducing cerebral infarction size and weakening neurocytes apoptosis in MCAO rats. It was further found that DN could improve oxidative stress (OS) injury of nerve cells by bringing down MDA and ROS levels and increasing SOD and GSH levels. Notably, DN exerts its pharmacological influences through entering blood-brain barrier. Mechanically, DN can reduce Keap1 expression while activate Nrf2 and HO-1 expression in neurocytes.

    CONCLUSIONS: The protective effect of DN on neurocytes have been demonstrated in both in vitro and in vivo circumstances. It deserves to be developed as a potential neuroprotective agent through regulating the Nrf2/HO-1 signaling pathway to ameliorate neurocytes impairment caused by OS.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  9. Othman ZA, Zakaria Z, Suleiman JB, Che Jalil NA, Wan Ghazali WS, Mohamed M
    Food Funct, 2022 Aug 01;13(15):8119-8130.
    PMID: 35796099 DOI: 10.1039/d2fo00949h
    This study explores the anti-atherosclerotic effects of bee bread in the context of oxidative stress, inflammation, and apoptosis phenomena in an obesity animal model, and its vitamin composition. Forty male Sprague-Dawley rats were administered with a normal diet (Normal group) and a high-fat diet (HFD) to induce obesity. After 6 weeks, obese rats that received the HFD were treated either with distilled water (Ob group), bee bread at 0.5 g per kg per day (Ob + Bb group), or orlistat at 10 mg per kg per day (Ob + Or group) concomitant with the HFD for another 6 weeks. Bee bread significantly improved atherosclerotic changes by enhancing the immunoexpressions of Nrf2/Keap1, impeding the immunoexpressions of NF-κβ downstream proteins, and intensifying Bcl-2 upregulation, attributed to the improvement in mast cell adherence and collagen deposition in the aortic wall of the Ob + Bb group. We have demonstrated that the treatment with bee bread attenuates the progression of atherosclerosis through its inhibition of vascular oxidative stress, and retardation of inflammatory reaction and apoptosis in obese rats, indicating its potential therapeutic targets for obesity-related vascular diseases. This could be partly attributed to the components of vitamins such as vitamins A, C and E that are present in bee bread, which need further study for the exact molecular mechanism of action.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  10. Ooi TC, Chan KM, Sharif R
    Immunopharmacol Immunotoxicol, 2017 Oct;39(5):259-267.
    PMID: 28697633 DOI: 10.1080/08923973.2017.1344987
    CONTEXT: Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer.

    OBJECTIVE: In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages.

    MATERIALS AND METHODS: We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay.

    RESULTS: Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine.

    CONCLUSION: Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  11. Nallathamby N, Malek SNA, Vidyadaran S, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2020;22(12):1215-1223.
    PMID: 33463938 DOI: 10.1615/IntJMedMushrooms.2020037001
    Cordyceps militaris is known for its curative properties. The present study was undertaken to evaluate the reduction of nitric oxide production by BV2 cells by the bioactive fraction of stroma powder of C. militaris, and to deduce the potential chemical components and pathways that may be responsible. The CE2 fraction from ethyl acetate extract did not exert any cytotoxic effects toward the BV2 cells at concentrations 0.1 to 100 μg/mL. The CE2 fraction also showed a significant (p < 0.05) reduction in nitric oxide production at 1-100 μg/mL. At 10 μg/mL, the CE2 fraction attenuated 85% of the NO production in BV2 cells. Further, the CE2 fraction (10 μg/mL) downregulated inflammatory genes, iNOS and COX-2, and upregulated anti-inflammatory genes, HO-1 and NQO-1. The CE2 fraction reduced NO production via activation of NRF2 and NF-κB transcriptions. The chemical constituents of the bioactive CE2 fraction were identified via GCMS. Eleven lipid components were identified including fatty acids, fatty acid esters, and sterols.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  12. Ooi BK, Goh BH, Yap WH
    Int J Mol Sci, 2017 Nov 05;18(11).
    PMID: 29113088 DOI: 10.3390/ijms18112336
    Oxidative stress is an important risk factor contributing to the pathogenesis of cardiovascular diseases. Oxidative stress that results from excessive reactive oxygen species (ROS) production accounts for impaired endothelial function, a process which promotes atherosclerotic lesion or fatty streaks formation (foam cells). Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in cellular redox homeostasis. Upon exposure to oxidative stress, Nrf2 is dissociated from its inhibitor Keap-1 and translocated into the nucleus, where it results in the transcriptional activation of cell defense genes. Nrf2 has been demonstrated to be involved in the protection against foam cells formation by regulating the expression of antioxidant proteins (HO-1, Prxs, and GPx1), ATP-binding cassette (ABC) efflux transporters (ABCA1 and ABCG1) and scavenger receptors (scavenger receptor class B (CD36), scavenger receptor class A (SR-A) and lectin-type oxidized LDL receptor (LOX-1)). However, Nrf2 has also been reported to exhibit pro-atherogenic effects. A better understanding on the mechanism of Nrf2 in oxidative stress-induced cardiac injury, as well as the regulation of cholesterol uptake and efflux, are required before it can serve as a novel therapeutic target for cardiovascular diseases prevention and treatment.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  13. Hosseinzadeh A, Jafari D, Kamarul T, Bagheri A, Sharifi AM
    J Cell Biochem, 2017 Jul;118(7):1879-1888.
    PMID: 28169456 DOI: 10.1002/jcb.25907
    The protective effects and mechanisms of DADS on IL-1β-mediated oxidative stress and mitochondrial apoptosis were investigated in C28I2 human chondrocytes. The effect of various concentrations of DADS (1, 5 10, 25, 50, and 100 μM) on C28I2 cell viability was evaluated in different times (2, 4, 8, 16, and 24 h) to obtain the non-cytotoxic concentrations of drug by MTT-assay. The protective effect of non-toxic concentrations of DADS on experimentally induced oxidative stress and apoptosis by IL-1β in C28I2 was evaluated. The effects of DADS on IL-1β-induced intracellular ROS production and lipid peroxidation were detected and the proteins expression of Nrf2, Bax, Bcl-2, caspase-3, total and phosphorylated JNK, and P38 MAPKs were analyzed by Western blotting. The mRNA expression of detoxifying phase II/antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. DADS in 1, 5, 10, and 25 μM concentrations had no cytotoxic effect after 24 h. Pretreatment with DADS remarkably increased Nrf2 nuclear translocation as well as the genes expression of detoxifying phase II/antioxidant enzymes and reduced IL-1β-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. DADS could considerably reduce IL-1β-induced oxidative stress and consequent mitochondrial apoptosis, as the major mechanisms of chondrocyte cell death in an experimental model of osteoarthritis. It may be considered as natural product in protecting OA-induced cartilage damage in clinical setting. J. Cell. Biochem. 118: 1879-1888, 2017. © 2017 Wiley Periodicals, Inc.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  14. Chen M, Samuel VP, Wu Y, Dang M, Lin Y, Sriramaneni R, et al.
    J Environ Pathol Toxicol Oncol, 2019;38(2):143-152.
    PMID: 31679277 DOI: 10.1615/JEnvironPatholToxicolOncol.2019029341
    The current study evaluated the cardioprotective activity of genistein in cases of doxorubicin-(Dox) induced cardiac toxicity and a probable mechanism underlying this protection, such as an antioxidant pathway in cardiac tissues. Animals used in this study were categorized into four groups. The first group was treated with sodium carboxymethylcellulose (0.3%; CMC-Na) solution. The second group received Dox (3.0 mg/kg, i.p.) on days 6, 12, 18, and 24. The third and fourth groups received Dox (3 mg/kg, i.p.) on days 6, 12, 18, and 24 and received protective doses of genistein (100 [group 3] and 200 [group 4] mg/kg/day, p.o.) for 30 days. Treatment with genistein significantly improved the altered cardiac function markers and oxidative stress markers. This was coupled with significant improvement in cardiac histopathological features. Genistein enhanced the Nrf2 and HO-1 expression, which showed protection against oxidative insult induced by Dox. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed substantial inhibition of apoptosis by genistein in myocardia. The study showed that genistein has a strong reactive oxygen species scavenging property and potentially (P ≤ .001) decreases the lipid peroxidation as well as inhibits DNA damage in cardiac toxicity induced by Dox. In conclusion, the potential antioxidant effect of genistein may be because of its modulatory effect on Nrf2/HO-1 signalling pathway and by this means exhibits cardioprotective effects from Dox-induced oxidative injury.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  15. Samuvel DJ, Nguyen NT, Jaeschke H, Lemasters JJ, Wang X, Choo YM, et al.
    J Nat Prod, 2022 Jul 22;85(7):1779-1788.
    PMID: 35815804 DOI: 10.1021/acs.jnatprod.2c00324
    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. Platanosides (PTSs) isolated from the American sycamore tree (Platanus occidentalis) represent a potential new four-molecule botanical drug class of antibiotics active against drug-resistant infectious disease. Preliminary studies have suggested that PTSs are safe and well tolerated and have antioxidant properties. The potential utility of PTSs in decreasing APAP hepatotoxicity in mice in addition to an assessment of their potential with APAP for the control of infectious diseases along with pain and pyrexia associated with a bacterial infection was investigated. On PTS treatment in mice, serum alanine aminotransferase (ALT) release, hepatic centrilobular necrosis, and 4-hydroxynonenal (4-HNE) were markedly decreased. In addition, inducible nitric oxide synthase (iNOS) expression and c-Jun-N-terminal kinase (JNK) activation decreased when mice overdosed with APAP were treated with PTSs. Computational studies suggested that PTSs may act as JNK-1/2 and Keap1-Nrf2 inhibitors and that the isomeric mixture could provide greater efficacy than the individual molecules. Overall, PTSs represent promising botanical drugs for hepatoprotection and drug-resistant bacterial infections and are effective in protecting against APAP-related hepatotoxicity, which decreases liver necrosis and inflammation, iNOS expression, and oxidative and nitrative stresses, possibly by preventing persistent JNK activation.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  16. Aliahmat NS, Abdul Sani NF, Wan Hasan WN, Makpol S, Wan Ngah WZ, Mohd Yusof YA
    J Nutrigenet Nutrigenomics, 2016;9(5-6):243-253.
    PMID: 28002828 DOI: 10.1159/000452407
    BACKGROUND/AIMS: The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins.

    METHODS: Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis.

    RESULTS: PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes.

    CONCLUSIONS: PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  17. Ooi BK, Phang SW, Yong PVC, Chellappan DK, Dua K, Khaw KY, et al.
    Life Sci, 2021 Aug 01;278:119658.
    PMID: 34048809 DOI: 10.1016/j.lfs.2021.119658
    AIMS: Maslinic acid (MA) is a naturally occurring pentacyclic triterpene known to exert cardioprotective effects. This study aims to investigate the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2) for MA-mediated anti-inflammatory effects in atheroma pathogenesis in vitro, including evaluation of tumor necrosis factor-alpha (TNF-α)-induced monocyte recruitment, oxidized low-density lipoprotein (oxLDL)-induced scavenger receptors expression, and nuclear factor-kappa B (NF-ĸB) activity in human umbilical vein endothelial cells (HUVECS) and human acute monocytic leukemia cell line (THP-1) macrophages.

    MATERIALS AND METHODS: An in vitro monocyte recruitment model utilizing THP-1 and HUVECs was developed to evaluate TNF-α-induced monocyte adhesion and trans-endothelial migration. To study the role of Nrf2 for MA-mediated anti-inflammatory effects, Nrf2 inhibitor ML385 was used as the pharmacological inhibitor. The expression of Nrf2, monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 36 (CD36), and scavenger receptor type A (SR-A) in HUVECs and THP-1 macrophages were investigated using RT-qPCR and Western blotting. The NF-κB activity was determined using NF-κB (p65) Transcription Factor Assay Kit.

    KEY FINDINGS: The results showed opposing effects of MA on Nrf2 expression in HUVECs and THP-1 macrophages. MA suppressed TNF-α-induced Nrf2 expression in HUVECs, but enhanced its expression in THP-1 macrophages. Combined effects of MA and ML385 suppressed MCP-1, VCAM-1, and SR-A expressions. Intriguingly, at the protein level, ML385 selectively inhibited SR-A but enhanced CD36 expression. Meanwhile, ML385 further enhanced MA-mediated inhibition of NF-κB activity in HUVECs. This effect, however, was not observed in THP-1 macrophages.

    SIGNIFICANCE: MA attenuated foam cell formation by suppressing VCAM-1, MCP-1, and SR-A expression, as well as NF-κB activity, possibly through Nrf2 inhibition. The involvement of Nrf2 for MA-mediated anti-inflammatory effects however differs between HUVECs and macrophages. Future investigations are warranted for a detailed evaluation of the contributing roles of Nrf2 in foam cells formation.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism*
  18. Ilori NTO, Liew CX, Fang CM
    Mol Biol Rep, 2020 Dec;47(12):9883-9894.
    PMID: 33244664 DOI: 10.1007/s11033-020-06025-x
    This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants' anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  19. Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR
    Mol Vis, 2019;25:47-59.
    PMID: 30820141
    Purpose: Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells.

    Methods: Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed.

    Results: F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level.

    Conclusions: The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.

    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
  20. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
    Matched MeSH terms: NF-E2-Related Factor 2/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links