Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, et al.
    BMC Biol, 2015 Dec 22;13:111.
    PMID: 26694817 DOI: 10.1186/s12915-015-0220-7
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.

    RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.

    CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.

    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  2. Abdul Rahman H, Manzor NF, Tan GC, Tan AE, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:57-8.
    PMID: 19024982
    Angiogenic induction was made to promote angiogenesis by differentiating stem cells towards endothelial cells. However, the stemness property of induced cells has not been revealed yet. Hence, we aim to evaluate the differential mRNA expression of stemness genes in human chorion-derived stem cells (CDSC) after being cultured in EDM50 comprised bFGF and VEGF. Results indicated that CDSC cultured in EMD50 expressed significantly higher mRNA level of Sox-2, FZD9, BST-1 and Nestin. In addition Oct-4, FGF-4 and ABCG-2 were also upregulated. Our finding suggested that CDSC after angiogenic induction enhanced its stem cell properties. This could be contributed for the mechanism of stem cell therapy in ischemic problem.
    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  3. Gupta T, Connors M, Tan JW, Manosroi W, Ahmed N, Ting PY, et al.
    Am J Hypertens, 2017 Dec 08;31(1):124-131.
    PMID: 28985281 DOI: 10.1093/ajh/hpx146
    BACKGROUND: Understanding the interactions between genetics, sodium (Na+) intake, and blood pressure (BP) will help overcome the lack of individual specificity in our current treatment of hypertension. This study had 3 goals: expand on the relationship between striatin gene (STRN) status and salt-sensitivity of BP (SSBP); evaluate the status of Na+ and volume regulating systems by striatin risk allele status; evaluate potential SSBP mechanisms.

    METHODS: We assessed the relationship between STRN status in humans (HyperPATH cohort) and SSBP and on volume regulated systems in humans and a striatin knockout mouse (STRN+/-).

    RESULTS: The previously identified association between a striatin risk allele and systolic SSBP was demonstrated in a new cohort (P = 0.01). The STRN-SSBP association was significant for the combined cohort (P = 0.003; β = +5.35 mm Hg systolic BP/risk allele) and in the following subgroups: normotensives, hypertensives, men, and older subjects. Additionally, we observed a lower epinephrine level in risk allele carriers (P = 0.014) and decreased adrenal medulla phenylethanolamine N-methyltransferase (PNMT) in STRN+/- mice. No significant associations were observed with other volume regulated systems.

    CONCLUSIONS: These results support the association between a variant of striatin and SSBP and extend the findings to normotensive individuals and other subsets. In contrast to most salt-sensitive hypertensives, striatin-associated SSBP is associated with normal plasma renin activity and reduced epinephrine levels. These data provide clues to the underlying cause and a potential pathway to achieve, specific, personalized treatment, and prevention.

    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  4. Ishak MF, Chua KH, Asma A, Saim L, Aminuddin BS, Ruszymah BH, et al.
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):835-40.
    PMID: 21543123 DOI: 10.1016/j.ijporl.2011.03.021
    This study was aimed to see the difference between chondrocytes from normal cartilage compared to chondrocytes from microtic cartilage. Specific attentions were to characterize the growth of chondrocytes in terms of cell morphology, growth profile and RT-PCR analysis.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  5. Loewen SP, Paterson AR, Loh SY, Rogers MF, Hindmarch CCT, Murphy D, et al.
    Exp Physiol, 2017 11 01;102(11):1373-1379.
    PMID: 28762571 DOI: 10.1113/EP086436
    NEW FINDINGS: What is the topic of this review? We describe roles of crucial signalling molecules in the paraventricular nucleus of the hypothalamus and highlight recent data suggesting sex-specific changes in the expression of crucial signalling molecules and their receptors, which may underlie sex differences in both cardiovascular and metabolic function. What advances does it highlight? This review highlights the integrative capacity of the paraventricular nucleus in mediating cardiovascular and metabolic effects by integrating information from multiple signalling molecules. It also proposes that these signalling molecules have sex-specific differential gene expression, indicating the importance of considering these differences in our ongoing search to understand the female-male differences in the regulation of crucial autonomic systems. Many traditional cardiovascular hormones have been implicated in metabolic function. Conversely, many hormones traditionally involved in metabolic regulation have an effect on cardiovascular function. Many of these signalling molecules exert such effects through specific actions in the paraventricular nucleus, an integrative autonomic control centre located in the hypothalamus. Here, we focus on four cardiovascular/metabolic peptide hormones that signal within the paraventricular nucleus, namely angiotensin II, orexin, adiponectin and nesfatin-1. Each of these hormones has specific electrophysiological effects on paraventricular nucleus neurons that can be related to its physiological actions. In addition, we introduce preliminary transcriptomic data indicating that the genes for some of these hormones and their receptors have sex-specific differential expression.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  6. Ch'ng ES, Kumanogoh A
    Mol. Cancer, 2010;9:251.
    PMID: 20858260 DOI: 10.1186/1476-4598-9-251
    Sema4D, also known as CD100, is a protein belonging to class IV semaphorin. Its physiologic roles in the immune and nervous systems have been extensively explored. However, the roles of Sema4D have extended beyond these traditionally studied territories. Via interaction with its high affinity receptor Plexin-B1, Sema4D-Plexin-B1 involvement in tumor progression is strongly implied. Here, we critically review and delineate the Sema4D-Plexin-B1 interaction in many facets of tumor progression: tumor angiogenesis, regulation of tumor-associated macrophages and control of invasive growth. We correlate the in vitro and in vivo experimental data with the clinical study outcomes, and present a molecular mechanistic basis accounting for the intriguingly contradicting results from these recent studies.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  7. Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, et al.
    J Psychiatr Res, 2017 05;88:28-37.
    PMID: 28086126 DOI: 10.1016/j.jpsychires.2016.12.020
    The epigenetic changes of RELN that are involved in the development of dopaminergic neurons may fit the developmental theory of schizophrenia. However, evidence regarding the association of RELN DNA methylation with schizophrenia is far from sufficient, as studies have only been conducted on a few limited brain samples. As DNA methylation in the peripheral blood may mirror the changes taking place in the brain, the use of peripheral blood for a DNA methylation study in schizophrenia is feasible due to the scarcity of brain samples. Therefore, the aim of our study was to examine the relationship of DNA methylation levels of RELN promoters with schizophrenia using genomic DNA derived from the peripheral blood of patients with the disorder. The case control studies consisted of 110 schizophrenia participants and 122 healthy controls who had been recruited from the same district. After bisufhite conversion, the methylation levels of the DNA samples were calculated based on their differences of the Cq values assayed using the highly sensitive real-time MethyLight TaqMan® procedure. A significantly higher level of methylation of the RELN promoter was found in patients with schizophrenia compared to controls (p = 0.005) and also in males compared with females (p = 0.004). Subsequently, the RELN expression of the methylated group was 25 fold less than that of the non-methylated group. Based upon the assumption of parallel methylation changes in the brain and peripheral blood, we concluded that RELN DNA methylation might contribute to the pathogenesis of schizophrenia. However, the definite effects of methylation on RELN function during development and also in adult life still require further elaboration.
    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  8. Li L, Menezes MP, Smith M, Forbes R, Züchner S, Burgess A, et al.
    Neuromuscul Disord, 2024 Apr;37:29-35.
    PMID: 38520993 DOI: 10.1016/j.nmd.2024.03.005
    5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  9. Vilhena-Franco T, Mecawi AS, Elias LL, Antunes-Rodrigues J
    J Endocrinol, 2016 Nov;231(2):167-180.
    PMID: 27613338
    Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  10. Tsuchida N, Nakashima M, Miyauchi A, Yoshitomi S, Kimizu T, Ganesan V, et al.
    Clin Genet, 2018 02;93(2):266-274.
    PMID: 28556953 DOI: 10.1111/cge.13061
    The seizure threshold 2 (SZT2) gene encodes a large, highly conserved protein that is associated with epileptogenesis. In mice, Szt2 is abundantly expressed in the central nervous system. Recently, biallelic SZT2 mutations were found in 7 patients (from 5 families) presenting with epileptic encephalopathy with dysmorphic features and/or non-syndromic intellectual disabilities. In this study, we identified by whole-exome sequencing compound heterozygous SZT2 mutations in 3 patients with early-onset epileptic encephalopathies. Six novel SZT2 mutations were found, including 3 truncating, 1 splice site and 2 missense mutations. The splice-site mutation resulted in skipping of exon 20 and was associated with a premature stop codon. All individuals presented with seizures, severe developmental delay and intellectual disabilities with high variability. Brain MRIs revealed a characteristic thick and short corpus callosum or a persistent cavum septum pellucidum in each of the 2 cases. Interestingly, in the third case, born to consanguineous parents, had unexpected compound heterozygous missense mutations. She showed microcephaly despite the other case and previous ones presenting with macrocephaly, suggesting that SZT2 mutations might affect head size.
    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  11. Watihayati MS, M S W, Zabidi AM, A M H ZH, Tang TH, T H T, et al.
    Kobe J Med Sci, 2007;53(4):171-5.
    PMID: 17932457
    Spinal Muscular Atrophy (SMA) is an autosomal recessive disease, which is characterized by degeneration of the anterior horn cells of the spinal cord. SMA is classified into 3 clinical subtypes, type I (severe), type II (intermediate), and type III (mild). Two genes, SMN1 and NAIP, have been identified as SMA-related genes. The SMN1 gene is now recognized as a responsible gene for the disease because it is deleted or mutated in most SMA patients. However, the role of the NAIP gene in SMA has not been fully clarified. To clarify the contribution of NAIP to the disease severity of SMA, we studied the relationship between NAIP-deletion and clinical phenotype in Malaysian patients. A total of 39 patients lacking SMN1 (12 type I, 19 type II, and 8 type III patients) were enrolled into this study. Seven out of 12 patients with type I SMA (approximately 60%) showed NAIP deletion. On the contrary, only 2 out of 20 type II patients and none of type III patients showed NAIP deletion. There was a statistically significant difference in NAIP-deletion frequency among the clinical subtypes (Fisher's exact probability test, p value = 0.014). In conclusion, according to our data that NAIP deletion was more frequent in type I SMA than in type II-III SMA, the NAIP gene may be a modifying factor for disease severity of SMA.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  12. Ismail CAN, Suppian R, Ab Aziz CB, Long I
    J Mol Neurosci, 2021 Feb;71(2):379-393.
    PMID: 32671697 DOI: 10.1007/s12031-020-01661-1
    The pharmacological inhibition of glial activation is one of the new approaches for combating neuropathic pain in which the role of glia in the modulation of neuropathic pain has attracted significant interest and attention. Neuron-glial crosstalk is achieved with N-methyl-D-aspartate-2B receptor (NMDAR-2B) activation. This study aims to determine the effect of ifenprodil, a potent noncompetitive NMDAR-2B antagonist, on activated microglia, brain-derived neurotrophic factors (BDNF) and downstream regulatory element antagonist modulator (DREAM) protein expression in the spinal cord of streptozotocin-induced painful diabetic neuropathy (PDN) rats following formalin injection. In this experimentation, 48 Sprague-Dawley male rats were randomly selected and divided into four groups: (n = 12): control, PDN, and ifenprodil-treated PDN rats at 0.5 μg or 1.0 μg for 7 days. Type I diabetes mellitus was then induced by injecting streptozotocin (60 mg/kg, i.p.) into the rats which were then over a 2-week period allowed to progress into the early phase of PDN. Ifenprodil was administered in PDN rats while saline was administered intrathecally in the control group. A formalin test was conducted during the fourth week to induce inflammatory nerve injury, in which the rats were sacrificed at 72 h post-formalin injection. The lumbar enlargement region (L4-L5) of the spinal cord was dissected for immunohistochemistry and western blot analyses. The results demonstrated a significant increase in formalin-induced flinching and licking behavior with an increased spinal expression of activated microglia, BDNF and DREAM proteins. It was also shown that the ifenprodil-treated rats following both doses reduced the extent of their flinching and duration of licking in PDN in a dose-dependent manner. As such, ifenprodil successfully demonstrated inhibition against microglia activation and suppressed the expression of BDNF and DREAM proteins in the spinal cord of PDN rats. In conclusion, ifenprodil may alleviate PDN by suppressing spinal microglia activation, BDNF and DREAM proteins.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  13. Foo JN, Chew EGY, Chung SJ, Peng R, Blauwendraat C, Nalls MA, et al.
    JAMA Neurol, 2020 06 01;77(6):746-754.
    PMID: 32310270 DOI: 10.1001/jamaneurol.2020.0428
    Importance: Large-scale genome-wide association studies in the European population have identified 90 risk variants associated with Parkinson disease (PD); however, there are limited studies in the largest population worldwide (ie, Asian).

    Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.

    Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria.

    Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores.

    Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12).

    Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.

    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  14. Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, et al.
    Oral Dis, 2012 Jul;18(5):469-76.
    PMID: 22251088 DOI: 10.1111/j.1601-0825.2011.01894.x
    Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression.
    Matched MeSH terms: Nerve Tissue Proteins/genetics*
  15. Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C
    Medicina (Kaunas), 2023 Jun 13;59(6).
    PMID: 37374342 DOI: 10.3390/medicina59061138
    Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  16. Choong PF, Mok PL, Cheong SK, Leong CF, Then KY
    Cytotherapy, 2007;9(2):170-83.
    PMID: 17453969
    The multipotency of stromal cells has been studied extensively. It has been reported that mesenchymal stromal cells (MSC) are capable of differentiating into cells of multilineage. Different methods and reagents have been used to induce the differentiation of MSC. We investigated the efficacy of different growth factors in inducing MSC differentiation into neurons.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  17. Omidbakhsh R, Rajabli B, Nasoohi S, Khallaghi B, Mohamed Z, Naidu M, et al.
    Exp Brain Res, 2014 Nov;232(11):3687-96.
    PMID: 25098558 DOI: 10.1007/s00221-014-4052-4
    Lipopolysaccharide is an endotoxin to induce sickness behavior in several animal models to explore the link between immune activation and cognition. Neuroinflammation playing a pivotal role in disease progress is evidently influenced by sphingosine-1-phosphate. As one of the sphingosine analogs in clinical use for multiple sclerosis, fingolimod (FTY720) was shown to substantially affect gene expression profile in the context of AD in our previous experiments. The present study was designed to evaluate the drug efficacy in the context of the mere inflammatory context leading to memory impairment. FTY720 was repeatedly administered for a few days before or after intracerebral lipopolysaccharide (LPS) injection in rats. Animal's brains were then assigned to histological as well as multiplex mRNA assay following memory performance test. Both FTY720 pre-treatment and post-treatment were similarly capable of ameliorating LPS-induced memory impairment as assessed by passive avoidance test. Such amending effects may be partly accountable by the concomitant alterations in transcriptional levels of mitogen-activated protein kinases as well as inflammatory genes determined by QuantiGene Plex analysis. These findings confirming FTY720 application benefits suggest its efficacy may not differ significantly while considered either as a preventive or as a therapeutic approach against neuroinflammation.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  18. Muthuraju S, Pati S, Rafiqul M, Abdullah JM, Jaafar H
    J Biosci, 2013 Mar;38(1):93-103.
    PMID: 23385817
    Traumatic brain injury (TBI) causes significant mortality in most developing countries worldwide. At present, it is imperative to identify a treatment to address the devastating post-TBI consequences. Therefore, the present study has been performed to assess the specific effect of immediate exposure to normabaric hyperoxia (NBO) after fluid percussion injury (FPI) in the striatum of mice. To execute FPI, mice were anesthetised and sorted into (i) a TBI group, (ii) a sham group without injury and (iii) a TBI group treated with immediate exposure to NBO for 3 h. Afterwards, brains were harvested for morphological assessment. The results revealed no changes in morphological and neuronal damage in the sham group as compared to the TBI group. Conversely, the TBI group showed severe morphological changes as well as neuronal damage as compared to the TBI group exposed to NBO for 3 h. Interestingly, our findings also suggested that NBO treatment could diminish the neuronal damage in the striatum of mice after FPI. Neuronal damage was evaluated at different points of injury and the neighbouring areas using morphology, neuronal apoptotic cell death and pan-neuronal markers to determine the complete neuronal structure. In conclusion, immediate exposure to NBO following FPI could be a potential therapeutic approach to reduce neuronal damage in the TBI model.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  19. Siar CH, Nagatsuka H, Han PP, Buery RR, Tsujigiwa H, Nakano K, et al.
    J Oral Pathol Med, 2012 Apr;41(4):332-9.
    PMID: 22077561 DOI: 10.1111/j.1600-0714.2011.01104.x
    Canonical and non-canonical Wnt signaling pathways modulate diverse cellular processes during embryogenesis and post-natally. Their deregulations have been implicated in cancer development and progression. Wnt signaling is essential for odontogenesis. The ameloblastoma is an odontogenic epithelial neoplasm of enamel organ origin. Altered expressions of Wnts-1, -2, -5a, and -10a are detected in this tumor. The activity of other Wnt members remains unclarified.
    Matched MeSH terms: Nerve Tissue Proteins/genetics
  20. Watihayati MS, Zabidi-Hussin AM, Tang TH, Matsuo M, Nishio H, Zilfalil BA
    Pediatr Int, 2007 Feb;49(1):11-4.
    PMID: 17250498
    The survival motor neuron 1 (SMN1) gene has been recognized to be responsible for spinal muscular atrophy (SMA) because it is homozygously deleted in more than 90% of SMA patients, irrespective of their clinical severity, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is now considered to be a modifying factor of the severity of SMA. In Malaysia, it remains to be elucidated whether deletion of the SMN1 gene is also a main cause of SMA or whether deletion of the NAIP gene is found in the SMA patients.
    Matched MeSH terms: Nerve Tissue Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links